Combining mutual information and stable matching strategy for dynamic evolutionary multi-objective optimization

被引:0
|
作者
Fu, Xiaogang [1 ]
Sun, Jianyong [2 ]
机构
[1] Shanghai Dianji Univ, Sch Elect Engn, Shanghai, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-objective evolutionary algorithm; dynamic multiobjective optimization; kinematics model; mutual information; stable matching strategy; ALGORITHM;
D O I
10.1080/0305215X.2017.1401066
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is reasonable to assume that the changing of the optimization environment is smooth when considering a dynamic multi-objective optimization problem. Learning techniques are widely used to explore the dependence structure to facilitate population re-initialization in evolutionary search paradigms. The aim of the learning techniques is to discover knowledge from history information, thereby to track the movement of the optimal front quickly through good initialization when a change occurs. In this article, a new learning strategy is proposed, where the main ideas are (1) to use mutual information to identify the relationship between previously found approximated solutions; (2) to use a stable matching mechanism strategy to associate previously found optimal solutions bijectively; and (3) to re-initialize the new population based on a kinematics model. Controlled experiments were carried out systematically on some widely used test problems. Comparison against several state-of-the-art dynamic multi-objective evolutionary algorithms showed comparable performance in favour of the developed algorithm.
引用
收藏
页码:1434 / 1452
页数:19
相关论文
共 50 条
  • [1] An Adaptive Knowledge Transfer Strategy for Evolutionary Dynamic Multi-objective Optimization
    Zhao, Donghui
    Lu, Xiaofen
    Tang, Ke
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 1, BIC-TA 2023, 2024, 2061 : 185 - 199
  • [2] A feedback-based prediction strategy for dynamic multi-objective evolutionary optimization
    Liang, Zhengping
    Zou, Ya
    Zheng, Shunxiang
    Yang, Shengxiang
    Zhu, Zexuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 172
  • [3] A two stages prediction strategy for evolutionary dynamic multi-objective optimization
    Sun, Hao
    Ma, Xuemin
    Hu, Ziyu
    Yang, Jingming
    Cui, Huihui
    APPLIED INTELLIGENCE, 2023, 53 (01) : 1115 - 1131
  • [4] A Hybrid Immigrants Strategy for Dynamic Multi-objective Optimization
    Shi, Lulu
    Wu, Yan
    Zhou, Yan
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 589 - 593
  • [5] A predictive strategy based on special points for evolutionary dynamic multi-objective optimization
    Li, Qingya
    Zou, Juan
    Yang, Shengxiang
    Zheng, Jinhua
    Ruan, Gan
    SOFT COMPUTING, 2019, 23 (11) : 3723 - 3739
  • [6] A new dynamic strategy for dynamic multi-objective optimization
    Wu, Yan
    Shi, Lulu
    Liu, Xiaoxiong
    INFORMATION SCIENCES, 2020, 529 : 116 - 131
  • [7] Dynamic multi-objective evolutionary algorithm with objective space prediction strategy
    Guerrero-Pena, Elaine
    Araujo, Aluizio F. R.
    APPLIED SOFT COMPUTING, 2021, 107
  • [8] A modular neural network-based population prediction strategy for evolutionary dynamic multi-objective optimization
    Li, Sanyi
    Yang, Shengxiang
    Wang, Yanfeng
    Yue, Weichao
    Qiao, Junfei
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 62
  • [9] Evolutionary Dynamic Multi-objective Optimization via Regression Transfer Learning
    Wang, Zhenzhong
    Jiang, Min
    Gao, Xing
    Feng, Liang
    Hu, Weizhen
    Tan, Kay Chen
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2375 - 2381
  • [10] A Fast Hypervolume Contribution Strategy for Evolutionary Multi-Objective Optimization
    Lia, Mei
    Zhan, Dawei
    2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024, 2024, : 271 - 278