Approximation of the maximum of storage process with fractional Brownian motion as input

被引:2
作者
Xu, Zhengchun [1 ]
Tan, Zhongquan [1 ]
Tang, Linjun [1 ]
机构
[1] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Extreme values; Storage process; Fractional Brownian motion; Discrete time process; MAX-DISCRETIZATION THEOREM; STATIONARY-PROCESSES; CONTINUOUS-TIME; EXTREMES; GRIDS;
D O I
10.1016/j.spl.2018.05.015
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, the asymptotic relation between the maximum of the storage process and the maximum of the process sampled at discrete time points is studied. It is shown that these two maxima are asymptotically independent or dependent when the grids of the discrete time points are sufficiently sparse or the so-called Pickands grids. The results complete a gap in Husler and Piterbarg (2004) which showed that the two maxima are asymptotically coincident when the grids of the discrete time points are sufficiently dense. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 50 条
[41]   Extremes of Shepp statistics for fractional Brownian motion [J].
ZhongQuan Tan ;
Yang Yang .
Science China Mathematics, 2015, 58 :1779-1794
[42]   Drawdown and Drawup for Fractional Brownian Motion with Trend [J].
Bai, Long ;
Liu, Peng .
JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (03) :1581-1612
[43]   Extremes of Shepp statistics for fractional Brownian motion [J].
TAN ZhongQuan ;
YANG Yang .
Science China(Mathematics), 2015, 58 (08) :1779-1794
[44]   On the infimum attained by the reflected fractional Brownian motion [J].
Debicki, K. ;
Kosinski, K. M. .
EXTREMES, 2014, 17 (03) :431-446
[45]   Extremes of Shepp statistics for fractional Brownian motion [J].
Tan ZhongQuan ;
Yang Yang .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) :1779-1794
[46]   Deconvolution of fractional Brownian motion [J].
Pipiras, V ;
Taqqu, MS .
JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) :487-501
[47]   On the prediction of fractional Brownian motion [J].
Gripenberg, G ;
Norros, I .
JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) :400-410
[48]   Trading Fractional Brownian Motion [J].
Guasoni, Paolo ;
Nika, Zsolt ;
Rasonyi, Miklos .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03) :769-789
[49]   Fractal (fractional) Brownian motion [J].
Chow, Winston C. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02) :149-162
[50]   Piecewise fractional Brownian motion [J].
Perrin, E ;
Harba, R ;
Iribarren, I ;
Jennane, R .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) :1211-1215