The immunorecognition, subcellular compartmentalization, and physicochemical properties of nucleic acid nanoparticles can be controlled by composition modification

被引:28
作者
Johnson, Morgan Brittany [1 ]
Halman, Justin R. [2 ]
Miller, Daniel K. [3 ]
Cooper, Joseph S. [3 ]
Khisamutdinov, Emil F. [3 ]
Marriott, Ian [1 ]
Afonin, Kirill A. [2 ]
机构
[1] Univ North Carolina Charlotte, Dept Biol Sci, Charlotte, NC 28223 USA
[2] Univ North Carolina Charlotte, Dept Chem, Nanoscale Sci Program, Charlotte, NC 28223 USA
[3] Ball State Univ, Dept Chem, Muncie, IN 47306 USA
基金
美国国家卫生研究院;
关键词
IMIQUIMOD 5-PERCENT CREAM; RIG-I; CHEMICAL-MODIFICATION; IMMUNE-RESPONSE; RNA; DELIVERY; TLR7; DNA; OLIGONUCLEOTIDES; 2-PHASE-III;
D O I
10.1093/nar/gkaa908
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nucleic acid nanoparticles (NANPs) have become powerful new platforms as therapeutic and diagnostic tools due to the innate biological ability of nucleic acids to identify target molecules or silence genes involved in disease pathways. However, the clinical application of NANPs has been limited by factors such as chemical instability, inefficient intracellular delivery, and the triggering of detrimental inflammatory responses following innate immune recognition of nucleic acids. Here, we have studied the effects of altering the chemical composition of a circumscribed panel of NANPs that share the same connectivity, shape, size, charge and sequences. We show that replacing RNA strands with either DNA or chemical analogs increases the enzymatic and thermodynamic stability of NANPs. Furthermore, we have found that such composition changes affect delivery efficiency and determine subcellular localization, effects that could permit the targeted delivery of NANP-based therapeutics and diagnostics. Importantly, we have determined that altering NANP composition can dictate the degree and mechanisms by which cell immune responses are initiated. While RNA NANPs trigger both TLR7 and RIG-I mediated cytokine and interferon production, DNA NANPs stimulate minimal immune activation. Importantly, incorporation of 2'F modifications abrogates RNA NANP activation of TLR7 but permits RIG-I dependent immune responses. Furthermore, 2'F modifications of DNA NANPs significantly enhances RIG-I mediated production of both proinflammatory cytokines and in- terferons. Collectively this indicates that off-target effects may be reduced and/or desirable immune responses evoked based upon NANPs modifications. Together, our studies show that NANP composition provides a simple way of controlling the immunostimulatory potential, and physicochemical and delivery characteristics, of such platforms. [GRAPHICS] .
引用
收藏
页码:11785 / 11798
页数:14
相关论文
共 64 条
[1]   RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate [J].
Ablasser, Andrea ;
Bauernfeind, Franz ;
Hartmann, Gunther ;
Latz, Eicke ;
Fitzgerald, Katherine A. ;
Hornung, Veit .
NATURE IMMUNOLOGY, 2009, 10 (10) :1065-U40
[2]   Selection of Molecular Structure and Delivery of RNA Oligonucleotides to Activate TLR7 versus TLR8 and to Induce High Amounts of IL-12p70 in Primary Human Monocytes [J].
Ablasser, Andrea ;
Poeck, Hendrik ;
Anz, David ;
Berger, Michael ;
Schlee, Martin ;
Kim, Sarah ;
Bourquin, Carole ;
Goutagny, Nadege ;
Jiang, Zhaozhao ;
Fitzgerald, Katherine A. ;
Rothenfusser, Simon ;
Endres, Stefan ;
Hartmann, Gunther ;
Hornung, Veit .
JOURNAL OF IMMUNOLOGY, 2009, 182 (11) :6824-6833
[3]  
Afonin K.A., 2013, DNA RNA NANOTECHNOL, V5, P833
[4]   Opportunities, Barriers, and a Strategy for Overcoming Translational Challenges to Therapeutic Nucleic Acid Nanotechnology [J].
Afonin, Kirill A. ;
Dobrovolskaia, Marina A. ;
Church, George ;
Bathe, Mark .
ACS NANO, 2020, 14 (08) :9221-9227
[5]   Triggering of RNA Interference with RNA-RNA, RNA-DNA, and DNA-RNA Nanoparticles [J].
Afonin, Kirill A. ;
Viard, Mathias ;
Kagiampakis, Ioannis ;
Case, Christopher L. ;
Dobrovolskaia, Marina A. ;
Hofmann, Jen ;
Vrzak, Ashlee ;
Kireeva, Maria ;
Kasprzak, Wojciech K. ;
KewalRamani, Vineet N. ;
Shapiro, Bruce A. .
ACS NANO, 2015, 9 (01) :251-259
[6]   Multifunctional RNA Nanoparticles [J].
Afonin, Kirill A. ;
Viard, Mathias ;
Koyfman, Alexey Y. ;
Martins, Angelica N. ;
Kasprzak, Wojciech K. ;
Panigaj, Martin ;
Desai, Ravi ;
Santhanam, Arti ;
Grabow, Wade W. ;
Jaeger, Luc ;
Heldman, Eliahu ;
Reiser, Jakob ;
Chiu, Wah ;
Freed, Eric O. ;
Shapiro, Bruce A. .
NANO LETTERS, 2014, 14 (10) :5662-5671
[7]   Nucleic Acids as Therapeutic Agents [J].
Alvarez-Salas, Luis M. .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2008, 8 (15) :1379-1404
[8]   Chemical Modification of siRNAs for In Vivo Use [J].
Behlke, Mark A. .
OLIGONUCLEOTIDES, 2008, 18 (04) :305-319
[9]   Cellular uptake of nanoparticles: journey inside the cell [J].
Behzadi, Shahed ;
Serpooshan, Vahid ;
Tao, Wei ;
Hamaly, Majd A. ;
Alkawareek, Mahmoud Y. ;
Dreaden, Erik C. ;
Brown, Dennis ;
Alkilany, Alaaldin M. ;
Farokhzad, Omid C. ;
Mahmoudi, Morteza .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (14) :4218-4244
[10]   Enhanced Influenza Virus-Like Particle Vaccination with a Structurally Optimized RIG-I Agonist as Adjuvant [J].
Beljanski, Vladimir ;
Chiang, Cindy ;
Kirchenbaum, Greg A. ;
Olagnier, David ;
Bloom, Chalise E. ;
Wong, Terianne ;
Haddad, Elias K. ;
Trautmann, Lydie ;
Ross, Ted M. ;
Hiscott, John .
JOURNAL OF VIROLOGY, 2015, 89 (20) :10612-10624