A posteriori error estimates for continuous interior penalty Galerkin approximation of transient convection diffusion optimal control problems

被引:1
作者
Zhou, Zhaojie [1 ]
Fu, Hongfei [2 ]
机构
[1] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R China
[2] China Univ Petr, Dept Computat & Appl Math, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
transient convection diffusion optimal control problem; continuous interior penalty Galerkin method; elliptic reconstruction; a posteriori error estimate; FINITE-ELEMENT METHODS; VARIATIONAL DISCRETIZATION; ELLIPTIC RECONSTRUCTION; EDGE STABILIZATION; PARABOLIC PROBLEMS; EQUATIONS; PRIORI;
D O I
10.1186/s13661-014-0207-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a posteriori error estimate for continuous interior penalty Galerkin approximation of transient convection dominated diffusion optimal control problems with control constraints is presented. The state equation is discretized by the continuous interior penalty Galerkin method with continuous piecewise linear polynomial space and the control variable is approximated by implicit discretization concept. By use of the elliptic reconstruction technique proposed for parabolic equations, a posteriori error estimates for state variable, adjoint state variable and control variable are proved, which can be used to guide the mesh refinement in the adaptive algorithm.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 23 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]   Optimal control of the convection-diffusion equation using stabilized finite element methods [J].
Becker, Roland ;
Vexler, Boris .
NUMERISCHE MATHEMATIK, 2007, 106 (03) :349-367
[3]   Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems [J].
Burman, E ;
Hansbo, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (15-16) :1437-1453
[4]  
Burman E, 2011, COMMUN MATH SCI, V9, P319
[5]  
Collis S., 2002, Report CAAM TR02-01
[6]   Optimal control and numerical adaptivity for advection-diffusion equations [J].
Dede', L ;
Quarteroni, A .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (05) :1019-1040
[7]   Adaptive characteristic finite element approximation of convection-diffusion optimal control problems [J].
Fu, Hongfei ;
Rui, Hongxing .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (03) :979-998
[8]   A variational discretization concept in control constrained optimization: The linear-quadratic case [J].
Hinze, M .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 30 (01) :45-61
[9]  
Hinze M, 2009, J COMPUT MATH, V27, P237
[10]   Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems [J].
Lakkis, Omar ;
Makridakis, Charalambos .
MATHEMATICS OF COMPUTATION, 2006, 75 (256) :1627-1658