Large deviations for local mass of branching Brownian motion

被引:6
作者
Oz, Mehmet [1 ]
机构
[1] Ozyegin Univ, Dept Nat & Math Sci, TR-34794 Istanbul, Turkey
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2020年 / 17卷 / 02期
关键词
Branching Brownian motion; Large deviations; Local mass; Local growth; LIMIT-THEOREMS; EQUATION; GROWTH; SPEED;
D O I
10.30757/ALEA.v17-27
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the local mass of a dyadic branching Brownian motion Z evolving in R-d. By 'local mass', we refer to the number of particles of Z that fall inside a ball with fixed radius and time-dependent center, lying in the region where there is typically exponential growth of particles. Using the strong law of large numbers for the local mass of branching Brownian motion and elementary geometric arguments, we find large deviation results giving the asymptotic behavior of the probability that the local mass is atypically small on an exponential scale. As corollaries, we obtain an asymptotic result for the probability of absence of Z in a ball with fixed radius and time-dependent center, and lower tail asymptotics for the local mass in a fixed ball. The proofs are based on a bootstrap argument, which we use to find the lower tail asymptotics for the mass outside a ball with time-dependent radius and fixed center, as well.
引用
收藏
页码:711 / 731
页数:21
相关论文
共 22 条
[1]  
Aidekon E., 2017, ZAP NAUCN SEMIN POMI, V457, P12
[2]   STRONG LIMIT-THEOREMS FOR GENERAL SUPERCRITICAL BRANCHING-PROCESSES WITH APPLICATIONS TO BRANCHING DIFFUSIONS [J].
ASMUSSEN, S ;
HERING, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 36 (03) :195-212
[3]  
Athreya K.B., 1972, BRANCHING PROCESSES, P196
[4]   UNIFORM-CONVERGENCE OF MARTINGALES IN THE BRANCHING RANDOM-WALK [J].
BIGGINS, JD .
ANNALS OF PROBABILITY, 1992, 20 (01) :137-151
[5]   MAXIMAL DISPLACEMENT OF BRANCHING BROWNIAN-MOTION [J].
BRAMSON, MD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1978, 31 (05) :531-581
[6]   KPP EQUATION AND SUPERCRITICAL BRANCHING BROWNIAN-MOTION IN THE SUBCRITICAL SPEED AREA - APPLICATION TO SPATIAL TREES [J].
CHAUVIN, B ;
ROUAULT, A .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (02) :299-314
[7]   Limit theorems for branching Markov processes [J].
Chen, Zhen-Qing ;
Shiozawa, Yuichi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (02) :374-399
[8]  
Derrida B., 2017, Springer Proc. Math. Stat., V208, P303
[9]   Strong Law of Large Numbers for branching diffusions [J].
Englaender, Janos ;
Harris, Simon C. ;
Kyprianou, Andreas E. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01) :279-298
[10]  
Engländer J, 2004, ANN PROBAB, V32, P78