A general algorithm for solving two-stage stochastic mixed 0-1 first-stage problems

被引:21
作者
Escudero, L. F. [2 ]
Garin, M. A. [1 ]
Merino, M. [3 ]
Perez, G. [3 ]
机构
[1] Univ Basque Country, UPV EHU, Fac CC Econ & Empresariares, Dpto Econ Aplicada 3, Bilbao 48015, Vizcaya, Spain
[2] Univ Rey Juan Carlos, Dpto Estadist & Invest Operat, Madrid, Spain
[3] Univ Basque Country, Dpto Matemat Aplicada Estadist & Invest Operat, Leioa, Vizcaya, Spain
关键词
Two-stage stochastic integer programming; Benders decomposition; Nonanticipativity constraints; Splitting variables; Twin node family; Branch-and-fix coordination; PROGRAMS; DECOMPOSITION; OPTIMIZATION; UNCERTAINTY;
D O I
10.1016/j.cor.2008.11.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an algorithmic approach for solving large-scale two-stage stochastic problems having mixed 0-1 first stage variables. The constraints in the first stage of the deterministic equivalent model have 0-1 variables and continuous variables, while the constraints in the second stage have only continuous. The approach uses the twin node family concept within the algorithmic framework, the so-called branch-and-fix coordination, in order to satisfy the nonanticipativity constraints. At the same time we consider a scenario cluster Benders; decomposition scheme for solving large-scale LP submodels given at each TNF integer set. Some computational results are presented to demonstrate the efficiency of the proposed approach. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2590 / 2600
页数:11
相关论文
共 25 条
[1]   A finite branch-and-bound algorithm for two-stage stochastic integer programs [J].
Ahmed, S ;
Tawarmalani, M ;
Sahinidis, NV .
MATHEMATICAL PROGRAMMING, 2004, 100 (02) :355-377
[2]   On the product selection and plant dimensioning problem under uncertainty [J].
Alonso-Ayuso, A ;
Escudero, LF ;
Garín, A ;
Ortuño, MT ;
Pérez, G .
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2005, 33 (04) :307-318
[3]   BFC, A branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0-1 programs [J].
Alonso-Ayuso, A ;
Escudero, LF ;
Ortuño, MT .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 151 (03) :503-519
[4]   An approach for strategic supply chain planning under uncertainty based on stochastic 0-1 programming [J].
Alonso-Ayuso, A ;
Escudero, LF ;
Garín, A ;
Ortuño, MT ;
Pérez, G .
JOURNAL OF GLOBAL OPTIMIZATION, 2003, 26 (01) :97-124
[5]  
[Anonymous], 1997, Introduction to stochastic programming
[6]  
Benders J., 1962, NUMER MATH, V4, P238, DOI [DOI 10.1007/S10287-004-0020-Y, DOI 10.1007/BF01386316, 10.1007/BF01386316]
[7]   L-shaped decomposition of two-stage stochastic programs with integer recourse [J].
Caroe, CC ;
Tind, J .
MATHEMATICAL PROGRAMMING, 1998, 83 (03) :451-464
[8]   Dual decomposition in stochastic integer programming [J].
Caroe, CC ;
Schultz, R .
OPERATIONS RESEARCH LETTERS, 1999, 24 (1-2) :37-45
[9]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213
[10]  
ESCUDERO LF, 2007, COMPUTATION IN PRESS, DOI DOI 10.2007/S10287-006-0035-7