Control of dark and anti-dark solitons in the (2+1)-dimensional coupled nonlinear Schrodinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system

被引:38
作者
Yu, Weitian [1 ,2 ]
Liu, Wenjun [1 ,2 ]
Triki, Houria [3 ]
Zhou, Qin [4 ]
Biswas, Anjan [5 ,6 ,7 ]
Belic, Milivoj R. [8 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, POB 12, Annaba 23000, Algeria
[4] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[5] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[6] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[7] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[8] Inst Phys Belgrade, Pregrev 118, Zemun 11080, Serbia
基金
中国国家自然科学基金;
关键词
Dark solitons; Soliton control; Analytic solution; Hirota method; TIME-DEPENDENT COEFFICIENTS; ROSSBY SOLITARY WAVES; CONSERVATION-LAWS; LASER; BOUSSINESQ; BEHAVIORS; ABSORBERS; WELL;
D O I
10.1007/s11071-019-04992-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we investigate the (2+1)-dimensional coupled nonlinear Schrodinger equations with perturbed dispersion and nonlinearity, which govern the transverse effects in a nonlinear optical system. Using symbolic calculation, the vector one- and two-soliton solutions are obtained via the Hirota method. By choosing the perturbation (t) of the dispersion rate of soliton transmission as different functions, we observe different dark and anti-dark soliton structures. Among other, the parabolic dark soliton, m-shaped and w-shaped anti-dark solitons, two kinds of s-shaped anti-dark solitons with different curvatures and an anti-dark soliton with a peak are displayed. Moreover, the effects of other free parameters on the phase shift and pulse width, and collision of solitons are discussed. These results are of potential significance for the study of ultrashort pulse lasers and optical logic switches.
引用
收藏
页码:471 / 483
页数:13
相关论文
共 62 条
[1]   OVERVIEW OF TRANSVERSE EFFECTS IN NONLINEAR-OPTICAL SYSTEMS [J].
ABRAHAM, NB ;
FIRTH, WJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1990, 7 (06) :951-962
[2]   Dynamics of optical solitons, multipliers and conservation laws to the nonlinear schrodinger equation in (2+1)-dimensions with non-Kerr law nonlinearity [J].
Aliyu, Aliyu Isa ;
Tchier, Fairouz ;
Inc, Mustafa ;
Yusuf, Abdullahi ;
Baleanu, Dumitru .
JOURNAL OF MODERN OPTICS, 2019, 66 (02) :136-142
[3]   The investigation of soliton solutions and conservation laws to the coupled generalized Schrodinger-Boussinesq system [J].
Baleanu, Dumitru ;
Inc, Mustafa ;
Aliyu, Aliyu Isa ;
Yusuf, Abdullahi .
WAVES IN RANDOM AND COMPLEX MEDIA, 2019, 29 (01) :77-92
[4]   Decoupled local/global energy-preserving schemes for the N-coupled nonlinear Schrodinger equations [J].
Cai, Jiaxiang ;
Bai, Chuanzhi ;
Zhang, Haihui .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 374 :281-299
[5]   Graphene saturable absorber for diode pumped Yb:Sc2SiO5 mode-locked laser [J].
Cai, Wei ;
Jiang, Shouzhen ;
Xu, Shicai ;
Li, Yaqi ;
Liu, Jie ;
Li, Chun ;
Zheng, Lihe ;
Su, Liangbi ;
Xu, Jun .
OPTICS AND LASER TECHNOLOGY, 2015, 65 :1-4
[6]   Picosecond passively mode-locked laser of 532 nm by reflective carbon nanotube [J].
Cai, Wei ;
Peng, Qianqian ;
Hou, Wei ;
Liu, Jie ;
Wang, Yonggang .
OPTICS AND LASER TECHNOLOGY, 2014, 58 :194-196
[7]   Exact Soliton Solutions for the (2+1)-Dimensional Coupled Higher-Order Nonlinear Schroding erEquations in Birefringent Optical Fiber Communication [J].
Cai, Yue-Jin ;
Bai, Cheng-Lin ;
Luo, Qing-Long .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2017, 67 (03) :273-279
[8]   Variational approach for breathers in a nonlinear fractional Schrodinger equation [J].
Chen, Manna ;
Guo, Qi ;
Lu, Daquan ;
Hu, Wei .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 71 :73-81
[9]   Lump solutions and interaction behaviors to the (2+1)-dimensional extended shallow water wave equation [J].
Cheng, Wenguang ;
Xu, Tianzhou .
MODERN PHYSICS LETTERS B, 2018, 32 (31)
[10]   Vector multi-rogue waves for the three-coupled fourth-order nonlinear Schrodinger equations in an alpha helical protein [J].
Du, Zhong ;
Tian, Bo ;
Chai, Han-Peng ;
Yuan, Yu-Qiang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 :49-59