Global stability for a coupled physics inverse problem

被引:18
作者
Alessandrini, Giovanni [1 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Geosci, I-34127 Trieste, Italy
关键词
stability; internal measurements; coupled physics; EXPONENTIAL INSTABILITY; UNIQUE CONTINUATION; INEQUALITIES; INTEGRALS;
D O I
10.1088/0266-5611/30/7/075008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a global Holder stability estimate for a hybrid inverse problem combining microwave imaging and ultrasound. The principal features of this result are that we assume to have access to measurements associated with a single, arbitrary and possibly sign changing solution of a Schrodinger equation, and that zero is allowed to be an eigenvalue of the equation.
引用
收藏
页数:10
相关论文
共 17 条
[1]   On multiple frequency power density measurements [J].
Alberti, Giovanni S. .
INVERSE PROBLEMS, 2013, 29 (11)
[2]   The inverse conductivity problem with one measurement: Bounds on the size of the unknown object [J].
Alessandrini, G ;
Rosset, E .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (04) :1060-1071
[3]   The stability for the Cauchy problem for elliptic equations [J].
Alessandrini, Giovanni ;
Rondi, Luca ;
Rosset, Edi ;
Vessella, Sergio .
INVERSE PROBLEMS, 2009, 25 (12)
[4]   On doubling inequalities for elliptic systems [J].
Alessandrini, Giovanni ;
Morassi, Antonino ;
Rosset, Edi ;
Vessella, Sergio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (02) :349-355
[5]   MICROWAVE IMAGING BY ELASTIC DEFORMATION [J].
Ammari, Habib ;
Capdeboscq, Yves ;
de Gournay, Frederic ;
Rozanova-Pierrat, Anna ;
Triki, Faouzi .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (06) :2112-2130
[6]  
Bal G., 2013, MATH SCI RES I PUBL, P325
[7]   Reconstruction of Coefficients in Scalar Second-Order Elliptic Equations from Knowledge of Their Solutions [J].
Bal, Guillaume ;
Uhlmann, Gunther .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (10) :1629-1652
[8]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[9]  
Di Cristo M, 2003, INVERSE PROBL, V19, P685, DOI 10.1088/0266-5611/19/3/313
[10]   UNIQUE CONTINUATION FOR ELLIPTIC-OPERATORS - A GEOMETRIC VARIATIONAL APPROACH [J].
GAROFALO, N ;
LIN, FH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (03) :347-366