Spectral large sieve inequalities for Hecke congruence subgroups of SL(2, Z[i])

被引:2
|
作者
Watt, Nigel
机构
基金
英国工程与自然科学研究理事会;
关键词
Spectral theory; Large sieve; Hecke congruence group; Gaussian integers; Summation formula; Automorphic form; Cusp form; Non-holomorphic modular form; Fourier coefficient; Kloosterman sum; KLOOSTERMAN SUMS; FOURIER COEFFICIENTS; FORMS;
D O I
10.1016/j.jnt.2014.01.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove, in respect of an arbitrary Hecke congruence subgroup Gamma = Gamma(0)(q(0)) <= SL(2,Z[i]), some new upper bounds for sums involving Fourier coefficients of Gamma-automorphic cusp forms on SL(2,C). The Fourier coefficients in question may arise from the Fourier expansion at any given cusp c of Gamma (our results are not limited to the case c = infinity). Our proof utilises an extension, to arbitrary cusps, of a spectral-Kloosterman summation formula for Gamma\SL(2,C) that was obtained by Lokvenec-Guleska (in her doctoral thesis). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:349 / 424
页数:76
相关论文
共 10 条