ATTRACTORS FOR A NON-LINEAR PARABOLIC EQUATION MODELLING SUSPENSION FLOWS

被引:6
作者
Amigo, Jose M. [1 ]
Catto, Isabelle [2 ]
Gimenez, Angel [1 ]
Valero, Jose [1 ]
机构
[1] Univ Miguel Hernandez, Ctr Invest Operat, Alicante 03202, Spain
[2] Univ Paris 09, CNRS, UMR 7534, CEREMADE, F-75775 Paris 16, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2009年 / 11卷 / 02期
关键词
Non-Newtonian fluids; set-valued dynamical system; global attractor; REACTION-DIFFUSION SYSTEMS; UNBOUNDED-DOMAINS; ASYMPTOTIC-BEHAVIOR; EVOLUTION-EQUATIONS; GLOBAL ATTRACTORS; R-N; WEAK;
D O I
10.3934/dcdsb.2009.11.205
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of a global attractor with respect to the weak topology of a suitable Banach space for a parabolic scalar differential equation describing a non-Newtonian flow. More precisely, we study a model proposed by Hebraud and Lequeux for concentrated suspensions.
引用
收藏
页码:205 / 231
页数:27
相关论文
共 38 条
[1]  
[Anonymous], USP MAT NAUK
[2]  
[Anonymous], 1988, INFINITE DIMENSIONAL
[3]   Asymptotic behavior and attractors for reaction diffusion equations in unbounded domains [J].
Arrieta, JM ;
Cholewa, JW ;
Dlotko, T ;
Rodríguez-Bernal, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :515-554
[4]  
Aubin J.-P., 1990, Set-Valued Analysis
[5]  
Babin A. V., 1985, RES NOTES MATH, VVII, P11
[6]  
BABIN A.V., 1989, ATTRACTORS OF EVOLUTION EQUATIONS
[7]   ATTRACTORS OF PARTIAL-DIFFERENTIAL EVOLUTION-EQUATIONS IN AN UNBOUNDED DOMAIN [J].
BABIN, AV ;
VISHIK, MI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 116 :221-243
[8]  
BREZIS H, 1983, ANAL FUNCIONAL
[9]   Well-posedness of a multiscale model for concentrated suspensions [J].
Cancès, E ;
Catto, I ;
Gati, Y ;
Le Bris, C .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1041-1058
[10]   Mathematical analysis of a nonlinear parabolic equation arising in the modelling of non-Newtonian flows [J].
Cancès, E ;
Catto, I ;
Gati, Y .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (01) :60-82