On Stolarsky inequality for Sugeno and Choquet integrals

被引:13
作者
Agahi, Hamzeh [1 ]
Mesiar, Radko [2 ,3 ]
Ouyang, Yao [4 ]
Pap, Endre [5 ,6 ]
Strboja, Mirjana [7 ]
机构
[1] Babol Univ Technol, Fac Basic Sci, Dept Math, Babol Sar, Iran
[2] Slovak Univ Technol Bratislava, Dept Math & Descript Geometry, Fac Civil Engn, SK-81368 Bratislava, Slovakia
[3] UTIA AV CR Prague, Prague 18208, Czech Republic
[4] Huzhou Teachers Coll, Fac Sci, Huzhou 313000, Zhejiang, Peoples R China
[5] Singidunum Univ, Belgrade 11000, Serbia
[6] Obuda Univ, H-1034 Budapest, Hungary
[7] Univ Novi Sad, Fac Sci, Novi Sad 21000, Serbia
关键词
Fuzzy measure; Sugeno integral; Choquet integral; Stolarsky's inequality;
D O I
10.1016/j.ins.2013.12.058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently Flores-Franulic, Roman-Flores and Chalco-Cano proved the Stolarsky type inequality for Sugeno integral with respect to the Lebesgue measure lambda. The present paper is devoted to generalize this result by relaxing some of its requirements. Moreover, Stolarsky inequality for Choquet integral is added, too. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 139
页数:6
相关论文
共 25 条
[1]   On some advanced type inequalities for Sugeno integral and T-(S-)evaluators [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Ouyang, Yao .
INFORMATION SCIENCES, 2012, 190 :64-75
[2]   General Barnes-Godunova-Levin type inequalities for Sugeno integral [J].
Agahi, Hamzeh ;
Roman-Flores, H. ;
Flores-Franulic, A. .
INFORMATION SCIENCES, 2011, 181 (06) :1072-1079
[3]  
[Anonymous], 2011, Probabilistic Metric Spaces
[4]  
[Anonymous], 2002, Handbook of measure theory
[5]  
Bullen P.S., 2003, Handbook of Means and Their Inequalities
[6]  
Choquet G., 1954, Ann. Institute. Fourier (Grenoble), V5, P131, DOI DOI 10.5802/AIF.53
[7]  
Denneberg D., 2011, MATH STAT METHODS B, V27
[8]   A note on fuzzy integral inequality of Stolarsky type [J].
Flores-Franulic, A. ;
Roman-Flores, H. ;
Chalco-Cano, Y. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) :55-59
[9]   A Chebyshev type inequality for fuzzy integrals [J].
Flores-Franulic, A. ;
Roman-Flores, H. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) :1178-1184
[10]  
Klement E.P., 2000, STUDIA LOGICA LIB, V8