Construction of new soliton-like solutions for the (2+1) dimensional Kadomtsev-Petviashvili equation

被引:46
作者
Yomba, E
机构
[1] Max Planck Inst Math, D-53111 Bonn, Germany
[2] Univ Ngaoundere, Fac Sci, Dept Phys, Ngaoundere, Cameroon
关键词
D O I
10.1016/j.chaos.2004.02.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present another extended tanh method for obtaining explicit exact soliton-like solutions of non-linear partial differential equations. By using this method via symbolic computation system, some families of new soliton-like solutions of the (2 + 1) dimensional Kadomtsev-Petviashvili equation are obtained. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:321 / 325
页数:5
相关论文
共 34 条
[21]   On a further extended tanh method [J].
Lü, ZS ;
Zhang, HQ .
PHYSICS LETTERS A, 2003, 307 (5-6) :269-273
[22]   SOLITARY WAVE SOLUTIONS OF NONLINEAR-WAVE EQUATIONS [J].
MALFLIET, W .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (07) :650-654
[23]   The tanh method .1. Exact solutions of nonlinear evolution and wave equations [J].
Malfliet, W ;
Hereman, W .
PHYSICA SCRIPTA, 1996, 54 (06) :563-568
[24]  
Matveev V. B., 1991, Darboux transformation and solitons, DOI DOI 10.1007/978-3-662-00922-2
[25]   EINSTEIN-MAXWELL SOLITONS [J].
NEUGEBAUER, G ;
KRAMER, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (09) :1927-1936
[26]   A COUPLED KDV EQUATION IS ONE CASE OF THE 4-REDUCTION OF THE KP HIERARCHY [J].
SATSUMA, J ;
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (10) :3390-3397
[27]   New exact travelling wave solutions for the Kawahara and modified Kawahara equations [J].
Sirendaoreji .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :147-150
[28]   Auxiliary equation method for solving nonlinear partial differential equations [J].
Sirendaoreji ;
Sun, J .
PHYSICS LETTERS A, 2003, 309 (5-6) :387-396
[29]   The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited [J].
Tam, HW ;
Ma, WX ;
Hu, XB ;
Wang, DL .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (01) :45-52
[30]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172