Indirect casting of patient-specific tricalcium phosphate zirconia scaffolds for bone tissue regeneration using rapid prototyping methodology

被引:10
作者
Sapkal, Pranav S. [1 ]
Kuthe, Abhaykumar M. [1 ]
Kashyap, Rajpal S. [2 ]
Nayak, Amit R. [2 ]
Kuthe, Sudhanshu A. [3 ]
Kawle, Anuja P. [2 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Mech Engn, Nagpur, Maharashtra, India
[2] Cent India Inst Med Sci, Biochem Res Lab, Nagpur, Maharashtra, India
[3] Visvesvaraya Natl Inst Technol, Dept Met & Mat Engn, Nagpur, Maharashtra, India
关键词
beta-tricalcium phosphate; Bone tissue engineering; Zirconia; In vitro; IN-VITRO; COMPOSITE SCAFFOLDS; POROUS SCAFFOLDS; FABRICATION; HYDROXYAPATITE; DEPOSITION; STABILITY; CERAMICS; IMPLANTS;
D O I
10.1007/s10934-016-0341-6
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Bio-composite scaffolds were fabricated by impregnating 10, 20, 30, 40 and 50% ZrO2 content with the beta-TCP matrix to heal load bearing large size bone defects. The composite scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and mechanical testing. The in vitro degradation of scaffolds was calculated by immersing the samples in phosphate buffer saline for a period of 21 days. Biocompatibility was evaluated by XTT assay using human Osteosarcoma cell line (MG-63). Results include scaffold surface morphology, overall porosity, phase transformation, bonding, compressive strength, biodegradability and cytotoxicity with an increase in ZrO2 percentages. The conclusions proved that beta-TCP scaffold with 30% ZrO2 content exhibits the best-required properties for the application in the field of bone tissue regeneration.
引用
收藏
页码:1013 / 1023
页数:11
相关论文
共 44 条
[1]   INTERFACE HISTOLOGY OF UNLOADED AND EARLY LOADED PARTIALLY-STABILIZED ZIRCONIA ENDOSSEOUS IMPLANT IN INITIAL BONE HEALING [J].
AKAGAWA, Y ;
ICHIKAWA, Y ;
NIKAI, H ;
TSURU, H .
JOURNAL OF PROSTHETIC DENTISTRY, 1993, 69 (06) :599-604
[2]  
Alizadeh A, 2014, ARTIF CELL NANOMED B, V44, P66
[3]   Porous zirconia/hydroxyapatite scaffolds for bone reconstruction [J].
An, Sang-Hyun ;
Matsumoto, Takuya ;
Miyajima, Hiroyuki ;
Nakahira, Atsushi ;
Kim, Kyo-Han ;
Imazato, Satoshi .
DENTAL MATERIALS, 2012, 28 (12) :1221-1231
[4]   Fabrication of osteo-structure analogous scaffolds via fused deposition modeling [J].
Chen, ZZ ;
Li, DC ;
Lu, BH ;
Tang, YP ;
Sun, ML ;
Xu, SF .
SCRIPTA MATERIALIA, 2005, 52 (02) :157-161
[5]  
Depprich R, 2008, HEAD FACE MED, V4, P1, DOI DOI 10.1186/1746-160X-4-1
[6]   Processing of titanium foams [J].
Dunand, DC .
ADVANCED ENGINEERING MATERIALS, 2004, 6 (06) :369-376
[7]  
Einhorn TA, 1998, CLIN ORTHOP RELAT R, pS7
[8]   Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites [J].
Evis, Zafer ;
Usta, Metin ;
Kutbay, Isil .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2009, 29 (04) :621-628
[9]   Osseointegration of zirconia and titanium dental implants: a histological and histomorphometrical study in the maxilla of pigs [J].
Gahlert, M. ;
Roehling, S. ;
Wieland, M. ;
Sprecher, C. M. ;
Kniha, H. ;
Milz, S. .
CLINICAL ORAL IMPLANTS RESEARCH, 2009, 20 (11) :1247-1253
[10]  
Hoffmann O, 2012, INT J ORAL MAX IMPL, V27, P352