Theoretical modeling of the mass transfer performance of CO2 absorption into DEAB solution in hollow fiber membrane contactor

被引:41
作者
Cao, Fan [1 ]
Gao, Hongxia [1 ]
Ling, Hao [1 ]
Huang, Yangqiang [1 ]
Liang, Zhiwu [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, Prov Hunan Key Lab Cost Effect Utilizat Fossil Fu, Joint Int Ctr CO2 Capture & Storage iCCS, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon dioxide; Hollow fiber membrane contactor; PTFE; DEAB; Mathematical modeling; POSTCOMBUSTION CARBON-CAPTURE; DIFFUSION-COEFFICIENTS; REACTION-KINETICS; TERTIARY-AMINES; DIOXIDE; N2O; MEA; TECHNOLOGY; ABSORBENTS; SOLUBILITY;
D O I
10.1016/j.memsci.2019.117439
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
4-diethylamino-2-butanol (DEAB), as a novel tertiary amine, shows a promising potential for CO2 capture. In this study, the mass transfer performance of CO2 absorption into aqueous DEAB solution in a non-wetted and partially-wetted mode of hollow fiber membrane contactor (HFMC) was theoretically investigated in comparison with that of monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA) and 2-amino-2-methyl-1-propanol (AMP). A 2D mathematical model based on finite element method (FEM) was established to solve the steady-state continuity equations for the shell, tube and membrane sides simultaneously. The influences of the operating parameters on the CO2 absorption flux in HFMC including liquid and gas velocity and CO2 partial pressure were comprehensively investigated. The numerical results show that the CO2 absorption flux can increase with the increasing liquid velocity and CO2 partial pressure, and slightly increases with the increasing gas velocity. Moreover, the CO2 absorption performance of aqueous DEAB solution was further compared with different amine solutions, which reveals that the CO2 absorption flux of DEAB is higher than those of DEA, MDEA and AMP, and is also comparable to MEA. The analysis on the mass transfer resistance indicates that the proportion of the membrane mass transfer resistance increased rapidly from 13.7% to 75.3% as membrane wetting ratio increased from 0% to 20%. Instead of the liquid phase, the mass transfer in wetted membrane phase becomes the rate-controlling step ultimately. The increase in the membrane wetting leads to the significant decrease in CO2 absorption performance with 49.4% and 80.5% decrease in CO2 absorption flux and the overall mass transfer coefficient at membrane wetting ratio of 5% and 50%, respectively. Based on the analysis on enhancement factor, it demonstrates that the chemical reaction between CO2 and DEAB for the non-wetted mode generally occurs in the intermediate fast-instantaneous regime and gradually transfers to the instantaneous regime with membrane wetting.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Mass transfer performance for CO2 absorption into aqueous blended DMEA/MEA solution with optimized molar ratio in a hollow fiber membrane contactor
    Zhang, Pengbo
    Xu, Ruiling
    Li, Haipeng
    Gao, Hongxia
    Liang, Zhiwu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 211 : 628 - 636
  • [12] Effect of porosity on mass transfer of gas absorption in a hollow fiber membrane contactor
    Zhang, Weidong
    Hao, Zisu
    Chen, Geng
    Li, Jiang
    Li, Zhushi
    Wang, Zihao
    Ren, Zhongqi
    JOURNAL OF MEMBRANE SCIENCE, 2014, 470 : 399 - 410
  • [13] Modeling and simulation of the hollow fiber bore size on the CO2 absorption in membrane contactor
    Ghasem, Nayef
    CHEMICAL PRODUCT AND PROCESS MODELING, 2020, 15 (04):
  • [14] Experimental studies on CO2 absorption in immersed hollow fiber membrane contactor
    Wu, Xiaona
    Wang, Liang
    Zhang, Zhaohui
    Li, Wenyang
    Guo, Xingfei
    SUSTAINABLE CITIES DEVELOPMENT AND ENVIRONMENT, PTS 1-3, 2012, 209-211 : 1571 - 1575
  • [15] Dynamic Modeling of CO2 Absorption Process Using Hollow-Fiber Membrane Contactor in MEA Solution
    Bozonc, Alexandru-Constantin
    Cormos, Ana-Maria
    Dragan, Simion
    Dinca, Cristian
    Cormos, Calin-Cristian
    ENERGIES, 2022, 15 (19)
  • [16] Simulation of CO2 absorption into aqueous DEA using a hollow fiber membrane contactor: Evaluation of contactor performance
    Delgado, Jose A.
    Uguina, Maria A.
    Sotelo, Jose L.
    Agueda, Vicente I.
    Sanz, Abel
    CHEMICAL ENGINEERING JOURNAL, 2009, 152 (2-3) : 396 - 405
  • [17] Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine
    Boributh, Somnuk
    Rongwong, Wichitpan
    Assabumrungrat, Suttichai
    Laosiripojana, Navadol
    Jiraratananon, Ratana
    JOURNAL OF MEMBRANE SCIENCE, 2012, 401 : 175 - 189
  • [18] Polyetherimide hollow fiber membranes for CO2 absorption and stripping in membrane contactor application
    Naim, R.
    Ismail, A. F.
    Matsuura, T.
    Rudaini, I. A.
    Abdullah, S.
    RSC ADVANCES, 2018, 8 (07) : 3556 - 3563
  • [19] CO2 absorption using benzylamine as absorbent and promoter in a hollow fiber membrane contactor: A numerical study
    Eskandari, Masoud
    Khaksar, Seyed Amir Nezam
    Keshavarz, Peyman
    JOURNAL OF CO2 UTILIZATION, 2022, 66
  • [20] Development of asymmetric polysulfone hollow fiber membrane contactor for CO2 absorption
    Rahbari-Sisakht, M.
    Ismail, A. F.
    Matsuura, T.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 86 : 215 - 220