A FUNCTIONAL EQUATION FOR THE RIEMANN ZETA FRACTIONAL DERIVATIVE

被引:24
作者
Guariglia, Emanuel [1 ,2 ]
Silvestrov, Sergei [1 ]
机构
[1] Malardalen Univ, Sch Educ Culture & Commun, Div Appl Math, S-72123 Vasteras, Sweden
[2] Univ Salerno, Dept Phys ER Caianiello, Via Giovanni Paolo 2, I-84084 Fisciano, Italy
来源
ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES | 2017年 / 1798卷
关键词
Riemann zeta function; generalized Grunwald-Letnikov fractional derivative; generalized Leibniz rule; functional equation;
D O I
10.1063/1.4972655
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a functional equation for the fractional derivative of the Riemann zeta function is presented. The fractional derivative of zeta is computed by a generalization of the Grunwald-Letnikov fractional operator, which satisfies the generalized Leibniz rule. It is applied to the asymmetric functional equation of zeta in order to obtain the result sought. Moreover, further properties of this fractional derivative are proposed and discussed.
引用
收藏
页数:10
相关论文
共 13 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
[Anonymous], 2010, INTRO ANAL NUMBER TH
[3]  
[Anonymous], 1987, THEORY RIEMANN ZETA
[4]  
APOSTOL TM, 1985, MATH COMPUT, V44, P223, DOI 10.1090/S0025-5718-1985-0771044-5
[5]   Fractional derivative of the Hurwitz ζ-function and chaotic decay to zero [J].
Cattani, C. ;
Guariglia, E. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) :75-81
[6]  
Graham Ronald L., 1994, Concrete Mathematics: A Foundation For Computer Science, V2nd
[7]  
Guariglia E, 2015, FRACTIONAL DYNAMICS, P357
[8]   Fractional derivatives in complex planes [J].
Li, Changpin ;
Dao, Xuanhung ;
Guo, Peng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1857-1869
[9]   Generalized Grunwald-Letnikov Fractional Derivative and Its Laplace and Fourier Transforms [J].
Ortigueira, Manuel D. ;
Trujillo, Juan J. .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (03)
[10]  
Ortigueira MD, 2011, Fractional calculus for scientists and engineers, V84, DOI 10.1007/978-94-007-0747-4