Asymptotic of eigenvalues and lattice points

被引:1
作者
Pinasco, Juan Pablo [1 ]
机构
[1] Univ Nacl Gen Sarmiento, Inst Ciencias, RA-1613 Buenos Aires, DF, Argentina
关键词
p-Laplacian; eigenvalues; lattice points;
D O I
10.1007/s10114-005-0761-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the spectral counting function for the p-Laplace operator in one dimension. We show the existence of a two-term Weyl-type asymptote. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enables us to obtain similar results for domains of infinite measure.
引用
收藏
页码:1645 / 1650
页数:6
相关论文
共 10 条
[1]   Asymptotic behavior of the eigenvalues of the one-dimensional weighted p-Laplace operator [J].
Bonder, JF ;
Pinasco, JP .
ARKIV FOR MATEMATIK, 2003, 41 (02) :267-280
[2]  
Chen H, 1998, ACTA MATH SIN, V14, P261
[3]  
COURANT ED, 1953, ANN PHYS, V3, P1
[4]  
Drabek P., 1999, DIFFERENTIAL INTEGRA, V12, P773
[5]   AN EXAMPLE OF A 2-TERM ASYMPTOTICS FOR THE COUNTING FUNCTION OF A FRACTAL DRUM [J].
FLECKINGERPELLE, J ;
VASSILIEV, DG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 337 (01) :99-116
[6]   SELBERG TRACE FORMULA AND RIEMANN ZETA-FUNCTION [J].
HEJHAL, DA .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (03) :441-482
[7]  
Kratzel E., 1988, Lattice Points
[8]   FRACTAL DRUM, INVERSE SPECTRAL PROBLEMS FOR ELLIPTIC-OPERATORS AND A PARTIAL RESOLUTION OF THE WEYL-BERRY CONJECTURE [J].
LAPIDUS, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 325 (02) :465-529
[9]  
LAPIDUS ML, 1993, P LOND MATH SOC, V66, P41
[10]  
Van den Berg M, 2001, INDIANA U MATH J, V50, P299