共 50 条
Rapid conformational dynamics of cytochrome p450 2E1 in a natural biological membrane environment
被引:5
|作者:
Smith, Stanley V.
[1
]
Robinson, Richard C.
Smith, Tina G.
Burks, Stephanie M.
Friedman, Fred K.
机构:
[1] Univ Mississippi, Med Ctr, Dept Pharmacol & Toxicol, Jackson, MS 39216 USA
[2] NCI, NIH, Bethesda, MD 20892 USA
关键词:
DRUG-DRUG INTERACTIONS;
CO BINDING-KINETICS;
FLASH-PHOTOLYSIS;
HALOTHANE HEPATITIS;
OXIDATIVE STRESS;
ETHANOL;
CYP2E1;
P450;
METABOLISM;
3A4;
D O I:
10.1021/bi061873u
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Among the members of the cytochrome P450 superfamily, P450 2E1 is most often associated with the production of reactive oxygen species and subsequent cellular toxicity. We sought to identify a structural basis for this distinguishing feature of P450 2E1 by examining its carbon monoxide binding kinetics as a probe of conformation/dynamics. We employed liver microsomes from wild-type and P450 2E1 knockout mice in order to characterize this P450 in a natural membrane environment. The CO binding kinetics of the P450s of wild-type microsomes had a rapid component that was absent in the knockout microsomes. Data analysis using the maximum entropy method (MEM) correspondingly identified two distinct kinetic components in the wild-type microsomes and only one component in the knockout microsomes. The rapid kinetic component in wild-type microsomes was attributed to endogenous P450 2E1, while the slower component was derived from the remaining P450s. In addition, rapid binding kinetics and a single component were also observed for human P450 2E1 in a baculovirus expression system, in the absence of other P450s. Binding kinetics of both mouse and human P450 2E1 were slowed in the presence of ethanol, a modulator of this P450. The unusually rapid CO binding kinetics of P450 2E1 indicate that it is more dynamically mobile than other P450s and thus able to more readily interconvert among alternate conformations. This suggests that conformational switching during the catalytic cycle may promote substrate release from a short-lived binding site, allowing activated oxygen to attack other targets with toxic consequences.
引用
收藏
页码:15617 / 15623
页数:7
相关论文