Semi-automated 3D segmentation of human skeletal muscle using Focused Ion Beam-Scanning Electron Microscopic images

被引:16
作者
Caffrey, Brian J. [1 ]
Maltsev, Alexander, V [2 ]
Gonzalez-Freire, Marta [2 ]
Hartnell, Lisa M. [3 ]
Ferrucci, Luigi [2 ]
Subramaniam, Sriram [1 ]
机构
[1] Univ British Columbia, Vancouver, BC, Canada
[2] NIA, Longitudinal Studies Sect, NIH, Baltimore, MD 21225 USA
[3] NCI, Lab Cell Biol, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
关键词
FIB-SEM; 3D electron microscopy; Machine learning; Aging; Skeletal muscle; Mitochondrial structure; Semi-automated segmentation; Tissue imaging;
D O I
10.1016/j.jsb.2019.03.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) is an imaging approach that enables analysis of the 3D architecture of cells and tissues at resolutions that are 1-2 orders of magnitude higher than that possible with light microscopy. The slow speeds of data collection and manual segmentation are two critical problems that limit the more extensive use of FIB-SEM technology. Here, we present an easily accessible robust method that enables rapid, large-scale acquisition of data from tissue specimens, combined with an approach for semi-automated data segmentation using the open-source machine learning Weka segmentation software, which dramatically increases the speed of image analysis. We demonstrate the feasibility of these methods through the 3D analysis of human muscle tissue by showing that our process results in an improvement in speed of up to three orders of magnitude as compared to manual approaches for data segmentation. All programs and scripts we use are open source and are immediately available for use by others.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 2018, COMPUTER VISION LABO
[2]   Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification [J].
Arganda-Carreras, Ignacio ;
Kaynig, Verena ;
Rueden, Curtis ;
Eliceiri, Kevin W. ;
Schindelin, Johannes ;
Cardona, Albert ;
Seung, H. Sebastian .
BIOINFORMATICS, 2017, 33 (15) :2424-2426
[3]   SegEM: Efficient Image Analysis for High-Resolution Connectomics [J].
Berning, Manuel ;
Boergens, Kevin M. ;
Helmstaedter, Moritz .
NEURON, 2015, 87 (06) :1193-1206
[4]   Subcellular connectomic analyses of energy networks in striated muscle [J].
Bleck, Christopher K. E. ;
Kim, Yuho ;
Willingham, T. Bradley ;
Glancy, Brian .
NATURE COMMUNICATIONS, 2018, 9
[5]   Next-Generation Machine Learning for Biological Networks [J].
Camacho, Diogo M. ;
Collins, Katherine M. ;
Powers, Rani K. ;
Costello, James C. ;
Collins, James J. .
CELL, 2018, 173 (07) :1581-1592
[6]  
Chmid B, 2010, BMC BIOINFORMATICS, V11
[7]  
Dice Lee R, 1945, MEASURES AMOUNT ECOL, V26
[8]   Power Grid Protection of the Muscle Mitochondrial Reticulum [J].
Glancy, Brian ;
Hartnell, Lisa M. ;
Combs, Christian A. ;
Fenmou, Armel ;
Sun, Junhui ;
Murphy, Elizabeth ;
Subramaniam, Sriram ;
Balaban, Robert S. .
CELL REPORTS, 2017, 19 (03) :487-496
[9]   Mitochondrial reticulum for cellular energy distribution in muscle [J].
Glancy, Brian ;
Hartnell, Lisa M. ;
Malide, Daniela ;
Yu, Zu-Xi ;
Combs, Christian A. ;
Connelly, Patricia S. ;
Subramaniam, Sriram ;
Balaban, Robert S. .
NATURE, 2015, 523 (7562) :617-+
[10]   Skeletal muscle ex vivo mitochondrial respiration parallels decline in vivo oxidative capacity, cardiorespiratory fitness, and muscle strength: The Baltimore Longitudinal Study of Aging [J].
Gonzalez-Freire, Marta ;
Scalzo, Paul ;
D'Agostino, Jarod ;
Moore, Zenobia A. ;
Diaz-Ruiz, Alberto ;
Fabbri, Elisa ;
Zane, Ariel ;
Chen, Brian ;
Becker, Kevin G. ;
Lehrmann, Elin ;
Zukley, Linda ;
Chia, Chee W. ;
Tanaka, Toshiko ;
Coen, Paul M. ;
Bernier, Michel ;
de Cabo, Rafael ;
Ferrucci, Luigi .
AGING CELL, 2018, 17 (02)