On Crank-Nicolson Adams-Bashforth timestepping for approximate deconvolution models in two dimensions

被引:8
|
作者
Kaya, Songul [1 ]
Manica, Carolina C. [2 ]
Rebholz, Leo G. [3 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkey
[2] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, BR-91509900 Porto Alegre, RS, Brazil
[3] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
Crank-Nicolson Adams Bashforth; Stability analysis; Finite element methods; Incompressible flow; Approximate deconvolution; INCOMPRESSIBLE NAVIER-STOKES; LARGE-EDDY SIMULATION; TIME; SCHEME; FLOW; ERROR;
D O I
10.1016/j.amc.2014.07.102
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Crank-Nicolson-Adams-Bashforth temporal discretization, together with a finite element spatial discretization, for efficiently computing solutions to approximate deconvolution models of incompressible flow in two dimensions. We prove a restriction on the timestep that will guarantee stability, and provide several numerical experiments that show the proposed method is very effective at finding accurate coarse mesh approximations for benchmark flow problems. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 26 条
  • [1] Decoupled Crank-Nicolson/Adams-Bashforth scheme for the Boussinesq equations with smooth initial data
    Zhang, Tong
    Jin, JiaoJiao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 594 - 621
  • [2] The Crank-Nicolson/Adams-Bashforth scheme for the Burgers equation with H2 and H1 initial data
    Zhang, Tong
    Jin, JiaoJiao
    HuangFu, YuGao
    APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 103 - 142
  • [3] FULLY DISCRETE FINITE ELEMENT METHOD BASED ON SECOND-ORDER CRANK-NICOLSON/ADAMS-BASHFORTH SCHEME FOR THE EQUATIONS OF MOTION OF OLDROYD FLUIDS OF ORDER ONE
    Guo, Yingwen
    He, Yinnian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (08): : 2583 - 2609
  • [4] Two Approximate Crank-Nicolson Finite-Difference Time-Domain Method for T Ez Waves
    Chen, Juan
    Wang, Jianguo
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (10) : 3375 - 3378
  • [5] Bandpass approximate Crank-Nicolson implementation for anisotropic gyrotropic plasma open region simulation
    Wu, Peiyu
    Xie, Yongjun
    Jiang, Haolin
    Di, HanYi
    Natsuki, Toshiaki
    OPTIK, 2021, 242
  • [6] The Modified Local Crank-Nicolson method for one- and two-dimensional Burgers' equations
    Huang, Pengzhan
    Abduwali, Abdurishit
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) : 2452 - 2463
  • [7] Two-Grid Finite Element Methods of Crank-Nicolson Galerkin Approximation for a Nonlinear Parabolic Equation
    Tan, Zhijun
    Li, Kang
    Chen, Yanping
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 800 - 817
  • [8] Two-Grid Crank-Nicolson FiniteVolume Element Method for the Time-Dependent Schrodinger Equation
    Chen, Chuanjun
    Lou, Yuzhi
    Zhang, Tong
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2022, 14 (06) : 1357 - 1380
  • [9] Crank-Nicolson Method of a Two-Grid Finite Volume Element Algorithm for Nonlinear Parabolic Equations
    Gong, Yunjie
    Chen, Chuanjun
    Lou, Yuzhi
    Xue, Guanyu
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (03) : 540 - 559
  • [10] Narrow-band anisotropic magnetized ferrite material simulation by approximate Crank-Nicolson procedure with improved nearly absorbing condition
    Wu, Peiyu
    Wang, Xin
    Xie, Yongjun
    Jiang, Haolin
    Natsuki, Toshiaki
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2022, 36 (13) : 1813 - 1837