The structure of gallium phosphate glasses by high-energy X-ray diffraction

被引:26
作者
Hoppe, U [1 ]
Ilieva, D
Neuefeind, J
机构
[1] Univ Rostock, Fachbereich Phys, D-18051 Rostock, Germany
[2] Bulgarian Acad Sci, Inst Chem Phys, Sofia 1113, Bulgaria
[3] Hamburger Synchrontronstschlungslab HASYLAB, Deutschen Elektronen Synchrotron, D-22607 Hamburg, Germany
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2002年 / 57卷 / 08期
关键词
X-ray scattering; short-range order; phosphate glasses;
D O I
10.1515/zna-2002-0811
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
X-ray diffraction experiments are used to obtain short-range order information of gallium phosphate glasses of meta- and pyrophosphate compositions. Parameters of the first-neighbor peaks, such as coordination numbers and distances, are obtained. A strong decrease of the Ga-O coordination number from 6.0+/-0.2 to 4.6+/-0.2 upon Ga2O3 addition is found, which is accompanied by a shortening of the Ga-O distances. Only GaO6 Octahedra exist at the metaphosphate composition. Close to the pyrophosphate composition, the majority of Ga atoms occupies already tetrahedral sites. The Ga-O coordination number behaves equivalent with the ratio M-TO = n(OT)/n(Ga), thus, with the number n(O-T) of terminal oxygen atoms (O-T) in phosphoruS-O-T bonds which are available for the coordination of each Ga atom. Thus, P-O-T-Ga bridges are formed for all OT atoms. The GaOn polyhedra neither share O-T atoms nor form Ga-O-Ga bridges. With increasing fraction of GaO4 tetrahedra and decreasing lengths of the phosphate chains the network expands.
引用
收藏
页码:709 / 715
页数:7
相关论文
共 50 条
[21]   Structure of potassium germanophosphate glasses by X-ray and neutron diffraction.: Part 1:: Short-range order [J].
Hoppe, U. ;
Brow, R. K. ;
Wyckoff, N. P. ;
Schoeps, A. ;
Hannon, A. C. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (30) :3572-3579
[22]   Structures of lanthanum. and yttrium aluminosilicate glasses determined by X-ray and neutron diffraction [J].
Pozdnyakova, I. ;
Sadiki, N. ;
Hennet, L. ;
Cristiglio, V. ;
Bytchkov, A. ;
Cuello, G. J. ;
Coutures, J. P. ;
Price, D. L. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (18) :2038-2044
[23]   A furnace to 1200 K for in situ heating x-ray diffraction, small angle x-ray scattering, and x-ray absorption fine structure experiments [J].
Cai, Quan ;
Wang, Qiang ;
Wang, Wei ;
Mo, Guang ;
Zhang, Kunhao ;
Cheng, Weidong ;
Xing, Xueqing ;
Chen, Zhongjun ;
Wu, Zhonghua .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (12)
[24]   X-ray induced luminescence of Sn2+-centers in zinc phosphate glasses [J].
Torimoto, Aya ;
Masai, Hirokazu ;
Okada, Go ;
Yanagida, Takayuki .
RADIATION MEASUREMENTS, 2017, 106 :175-179
[25]   The microscopic structure of liquid mercury from neutron and X-ray diffraction [J].
Bafile, U ;
Barocchi, F ;
Cilloco, F ;
Hochgesand, K ;
Winter, R ;
Fischer, HE .
PHYSICA B, 2000, 276 :452-453
[26]   X-ray server: an online resource for simulations of X-ray diffraction and scattering [J].
Stepanov, S .
ADVANCES IN COMPUTATIONAL METHODS FOR X-RAY AND NEUTRON OPTICS, 2004, 5536 :16-26
[27]   High pressure behaviour of TbN: an X-ray diffraction and computational study [J].
Jakobsen, JM ;
Madsen, GKH ;
Jorgensen, JE ;
Olsen, JS ;
Gerward, L .
SOLID STATE COMMUNICATIONS, 2002, 121 (08) :447-452
[28]   X-ray diffraction studies on molten zinc bromide at high pressure [J].
Heusel, G. ;
Bertagnolli, H. ;
Neuefeind, J. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (30-31) :3210-3216
[29]   Evaluation of medipix-1 in X-ray scattering and X-ray diffraction applications [J].
Ponchut, C ;
Zontone, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 510 (1-2) :29-34
[30]   Interface reconstructed structure of Ag/Si(111) revealed by X-ray diffraction [J].
Horii, S ;
Akimoto, K ;
Ito, S ;
Emoto, T ;
Ichimiya, A ;
Tajiri, H ;
Yashiro, W ;
Nakatani, S ;
Takahashi, T ;
Sugiyama, H ;
Zhang, X ;
Kawata, H .
SURFACE SCIENCE, 2001, 493 (1-3) :194-199