Bounds for the positive and negative inertia index of a graph

被引:10
|
作者
Fan, Yi-Zheng [1 ]
Wang, Long [1 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Positive inertia index; Negative inertia index; Matching number; Cyclomatic number;
D O I
10.1016/j.laa.2017.02.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph and let A(G) be adjacency matrix of G. The positive inertia index (respectively, the negative inertia index) of G, denoted by p(G) (respectively, n(G)), is defined to be the number of positive eigenvalues (respectively, negative eigenvalues) of A(G). In this paper, we present the bounds for p(G) and n(G) as follows: m(G) - c(G) <= p(G) <= m(G) +c(G), m(G) - c(G) <= n(G) <= m(G) +c(G), where m(G) and c(G) are respectively the matching number and the cyclomatic number of G. Furthermore, we characterize the graphs which attain the upper bounds and the lower bounds respectively. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:15 / 27
页数:13
相关论文
共 34 条
  • [31] Upper bounds to the number of vertices in a k-critically n-connected graph
    Kriesell, M
    GRAPHS AND COMBINATORICS, 2002, 18 (01) : 133 - 146
  • [32] Some extremal properties of the multiplicatively weighted Harary index of a graph
    Li, Shuchao
    Zhang, Huihui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) : 961 - 978
  • [33] Some extremal properties of the multiplicatively weighted Harary index of a graph
    Shuchao Li
    Huihui Zhang
    Journal of Combinatorial Optimization, 2016, 31 : 961 - 978
  • [34] Sharp bounds for the general Randic index of graphs with fixed number of vertices and cyclomatic number
    Su, Guifu
    Wu, Yue
    Qin, Xiaowen
    Du, Junfeng
    Guo, Weili
    Zhang, Zhenghang
    Song, Lifei
    AIMS MATHEMATICS, 2023, 8 (12): : 29352 - 29367