On parameter estimation of fractional Ornstein-Uhlenbeck process

被引:0
|
作者
Farah, Fatima-Ezzahra [1 ]
机构
[1] Cadi Ayyad Univ, Natl Sch Appl Sci Marrakesh, Marrakech, Morocco
关键词
Fractional Ornstein-Uhlenbeck process; strong consistency; asymptotic normality;
D O I
10.1515/rose-2022-2079
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a problem of parameter estimation for the fractional Ornstein-Uhlenbeck model given by the stochastic differential equation dX(t) = -theta X(t)dt + dB(t)(H), t >= 0, where theta > 0 is an unknown parameter to be estimated and B-H is a fractional Brownian motion with Hurst parameter H is an element of (0,1). We provide an estimator for theta, and then we study its strong consistency and asymptotic normality. The main tool in our proofs is the paper [I. Nourdin, D. Nualart and G. Peccati, The Breuer-Major theorem in total variation: Improved rates under minimal regularity, Stochastic Process. Appl. 131 2021, 1-20].
引用
收藏
页码:161 / 170
页数:10
相关论文
共 50 条
  • [31] Parameter estimation for the Rosenblatt Ornstein-Uhlenbeck process with periodic mean
    Shevchenko, Radomyra
    Tudor, Ciprian A.
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (01) : 227 - 247
  • [32] Hypothesis testing of the drift parameter sign for fractional Ornstein-Uhlenbeck process
    Kukush, Alexander
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (01): : 385 - 400
  • [33] Parameter Estimation for Complex Ornstein-Uhlenbeck Processes
    潘玉荣
    孙西超
    JournalofDonghuaUniversity(EnglishEdition), 2019, 36 (04) : 399 - 404
  • [34] Volatility estimation in fractional Ornstein-Uhlenbeck models
    Bajja, Salwa
    Es-Sebaiy, Khalifa
    Viitasaari, Lauri
    STOCHASTIC MODELS, 2020, 36 (01) : 94 - 111
  • [35] On the local times of fractional Ornstein-Uhlenbeck process
    Yan, LT
    Tian, M
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 73 (03) : 209 - 220
  • [36] Some properties of the fractional Ornstein-Uhlenbeck process
    Yan, Litan
    Lu, Yunsheng
    Xu, Zhiqiang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (14)
  • [37] PARAMETER ESTIMATION FOR AN ORNSTEIN-UHLENBECK PROCESS DRIVEN BY A GENERAL GAUSSIAN NOISE
    Chen, Yong
    Zhou, Hongjuan
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (02) : 573 - 595
  • [38] The Local Time of the Fractional Ornstein-Uhlenbeck Process
    Shen, Guangjun
    Zhu, Dongjin
    Ren, Yong
    Ding, Xueping
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [39] Parameter identification for the Hermite Ornstein-Uhlenbeck process
    Assaad, Obayda
    Tudor, Ciprian A.
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 251 - 270
  • [40] Asymptotic properties for the parameter estimation in Ornstein-Uhlenbeck process with discrete observations
    Jiang, Hui
    Liu, Hui
    Zhou, Youzhou
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3192 - 3229