On parameter estimation of fractional Ornstein-Uhlenbeck process

被引:0
|
作者
Farah, Fatima-Ezzahra [1 ]
机构
[1] Cadi Ayyad Univ, Natl Sch Appl Sci Marrakesh, Marrakech, Morocco
关键词
Fractional Ornstein-Uhlenbeck process; strong consistency; asymptotic normality;
D O I
10.1515/rose-2022-2079
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a problem of parameter estimation for the fractional Ornstein-Uhlenbeck model given by the stochastic differential equation dX(t) = -theta X(t)dt + dB(t)(H), t >= 0, where theta > 0 is an unknown parameter to be estimated and B-H is a fractional Brownian motion with Hurst parameter H is an element of (0,1). We provide an estimator for theta, and then we study its strong consistency and asymptotic normality. The main tool in our proofs is the paper [I. Nourdin, D. Nualart and G. Peccati, The Breuer-Major theorem in total variation: Improved rates under minimal regularity, Stochastic Process. Appl. 131 2021, 1-20].
引用
收藏
页码:161 / 170
页数:10
相关论文
共 50 条
  • [21] Parameter estimation for threshold Ornstein-Uhlenbeck processes from discrete observations
    Hu, Yaozhong
    Xi, Yuejuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
  • [22] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44
  • [23] On the Exponentials of Fractional Ornstein-Uhlenbeck Processes
    Matsui, Muneya
    Shieh, Narn-Rueih
    ELECTRONIC JOURNAL OF PROBABILITY, 2009, 14 : 594 - 611
  • [24] Fractional iterated Ornstein-Uhlenbeck Processes
    Kalemkerian, Juan
    Rafael Leon, Jose
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (02): : 1105 - 1128
  • [25] Parameter estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise
    El Onsy, Brahim
    Es-Sebaiy, Khalifa
    Viens, Frederi G.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2017, 89 (02) : 431 - 468
  • [26] Asymptotic law of limit distribution for fractional Ornstein-Uhlenbeck process
    Liang Shen
    Qingsong Xu
    Advances in Difference Equations, 2014
  • [27] Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications
    Giacomo Ascione
    Yuliya Mishura
    Enrica Pirozzi
    Methodology and Computing in Applied Probability, 2021, 23 : 53 - 84
  • [28] Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications
    Ascione, Giacomo
    Mishura, Yuliya
    Pirozzi, Enrica
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2021, 23 (01) : 53 - 84
  • [29] On integration by parts formula and characterization of fractional Ornstein-Uhlenbeck process
    Sun, Xiaoxia
    Guo, Feng
    STATISTICS & PROBABILITY LETTERS, 2015, 107 : 170 - 177
  • [30] Modeling and forecasting realized volatility with the fractional Ornstein-Uhlenbeck process✩
    Wang, Xiaohu
    Xiao, Weilin
    Yu, Jun
    JOURNAL OF ECONOMETRICS, 2023, 232 (02) : 389 - 415