Convergence of singular perturbations of strongly damped nonlinear wave equations

被引:3
作者
Fitzgibbon, WE [1 ]
Parrott, ME [1 ]
机构
[1] UNIV S FLORIDA,DEPT MATH,TAMPA,FL 33620
基金
美国国家科学基金会;
关键词
singular perturbations; nonlinear wave equations; transverse motion of an extendable string;
D O I
10.1016/0362-546X(95)00143-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:165 / 174
页数:10
相关论文
共 18 条
[1]   INITIAL-BOUNDARY VALUE-PROBLEMS FOR AN EXTENSIBLE BEAM [J].
BALL, JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 42 (01) :61-90
[2]  
Bernstein S., 1940, IZV AKAD NAUK SSSR M, V4, P17
[3]  
BOHM M, 1992, 1078 IMA
[4]   EXISTENCE, UNIQUENESS AND STABILITY OF SOLUTIONS OF A CLASS OF NONLINEAR PARTIAL-DIFFERENTIAL EQUATIONS [J].
CAUGHEY, TK ;
ELLISON, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 51 (01) :1-32
[5]   PROOF OF EXTENSIONS OF 2 CONJECTURES ON STRUCTURAL DAMPING FOR ELASTIC-SYSTEMS [J].
CHEN, SP ;
TRIGGIANI, R .
PACIFIC JOURNAL OF MATHEMATICS, 1989, 136 (01) :15-55
[7]  
Ebihara Y., 1975, FUNKC EKVACIOJ-SER I, V18, P227
[8]   GLOBAL EXISTENCE AND BOUNDEDNESS OF SOLUTIONS TO THE EXTENSIBLE BEAM EQUATION [J].
FITZGIBBON, WE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1982, 13 (05) :739-745
[9]   BIFURCATION TO DIVERGENCE AND FLUTTER IN FLOW-INDUCED OSCILLATIONS - INFINITE DIMENSIONAL ANALYSIS [J].
HOLMES, P ;
MARSDEN, J .
AUTOMATICA, 1978, 14 (04) :367-384
[10]  
KATO T, 1970, P S PURE MATH, P62