Structural basis for inhibition of an archaeal CRISPR-Cas type I-D large subunit by an anti-CRISPR protein

被引:17
|
作者
Manav, M. Cemre [1 ,3 ]
Van, Lan B. [1 ]
Lin, Jinzhong [2 ]
Fuglsang, Anders [2 ]
Peng, Xu [2 ]
Brodersen, Ditlev E. [1 ]
机构
[1] Aarhus Univ, Dept Mol Biol & Genet, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark
[2] Univ Copenhagen, Dept Biol, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
[3] MRC Lab Mol Biol, Cambridge CB2 0QH, England
关键词
CRYSTAL-STRUCTURE; EVOLUTIONARY CLASSIFICATION; CRYO-EM; NUCLEASE; BACTERIA; INTERFERENCE; MECHANISM; INSIGHTS; REVEALS; COMPLEX;
D O I
10.1038/s41467-020-19847-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A hallmark of type I CRISPR-Cas systems is the presence of Cas3, which contains both the nuclease and helicase activities required for DNA cleavage during interference. In subtype I-D systems, however, the histidine-aspartate (HD) nuclease domain is encoded as part of a Cas10-like large effector complex subunit and the helicase activity in a separate Cas3' subunit, but the functional and mechanistic consequences of this organisation are not currently understood. Here we show that the Sulfolobus islandicus type I-D Cas10d large subunit exhibits an unusual domain architecture consisting of a Cas3-like HD nuclease domain fused to a degenerate polymerase fold and a C-terminal domain structurally similar to Cas11. Crystal structures of Cas10d both in isolation and bound to S. islandicus rod-shaped virus 3 AcrID1 reveal that the anti-CRISPR protein sequesters the large subunit in a non-functional state unable to form a cleavage-competent effector complex. The architecture of Cas10d suggests that the type I-D effector complex is similar to those found in type III CRISPR-Cas systems and that this feature is specifically exploited by phages for anti-CRISPR defence. In type I-D CRISPR-Cas systems, the nuclease and helicase activities are carried out by separate subunits. The crystal structure of Sulfolobus islandicus type I-D large subunit Cas10d, containing a nuclease domain, reveals unusual architecture. The structure of Cas10d in complex with anti-CRISPR protein AcrID1 suggests that the latter sequesters Cas10d in a nonfunctional state.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Non-canonical inhibition strategies and structural basis of anti-CRISPR proteins targeting type I CRISPR-Cas systems
    Yin, Peipei
    Zhang, Yi
    Yang, Lingguang
    Feng, Yue
    JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (07)
  • [2] Inhibition of Type III CRISPR-Cas Immunity by an Archaeal Virus-Encoded Anti-CRISPR Protein
    Bhoobalan-Chitty, Yuvaraj
    Johansen, Thomas Baek
    Di Cianni, Nadia
    Peng, Xu
    CELL, 2019, 179 (02) : 448 - +
  • [3] Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins
    Zhang, Heng
    Li, Zhuang
    Daczkowski, Courtney M.
    Gabel, Clinton
    Mesecar, Andrew D.
    Chang, Leifu
    CELL HOST & MICROBE, 2019, 25 (06) : 815 - +
  • [4] Novel structure of the anti-CRISPR protein AcrIE3 and its implication on the CRISPR-Cas inhibition
    Kim, Do Yeon
    Ha, Hyun Ji
    Park, Hyun Ho
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 722
  • [5] Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins
    Bondy-Denomy, Joseph
    Garcia, Bianca
    Strum, Scott
    Du, Mingjian
    Rollins, MaryClare F.
    Hidalgo-Reyes, Yurima
    Wiedenheft, Blake
    Maxwell, Karen L.
    Davidson, Alan R.
    NATURE, 2015, 526 (7571) : 136 - +
  • [6] Structural insights into the inactivation of the type I-F CRISPR-Cas system by anti-CRISPR proteins
    Yang, Lingguang
    Zhang, Yi
    Yin, Peipei
    Feng, Yue
    RNA BIOLOGY, 2021, 18 : 562 - 573
  • [7] Insights into the inhibition of type I-F CRISPR-Cas system by a multifunctional anti-CRISPR protein AcrIF24
    Yang, Lingguang
    Zhang, Laixing
    Yin, Peipei
    Ding, Hao
    Xiao, Yu
    Zeng, Jianwei
    Wang, Wenhe
    Zhou, Huan
    Wang, Qisheng
    Zhang, Yi
    Chen, Zeliang
    Yang, Maojun
    Feng, Yue
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity
    He, Fei
    Bhoobalan-Chitty, Yuvaraj
    Van, Lan B.
    Kjeldsen, Anders L.
    Dedola, Matteo
    Makarova, Kira S.
    Koonin, Eugene V.
    Brodersen, Ditlev E.
    Peng, Xu
    NATURE MICROBIOLOGY, 2018, 3 (04): : 461 - 469
  • [9] Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein
    Dong, De
    Guo, Minghui
    Wang, Sihan
    Zhu, Yuwei
    Wang, Shuo
    Xiong, Zhi
    Yang, Jianzheng
    Xu, Zengliang
    Huang, Zhiwei
    NATURE, 2017, 546 (7658) : 436 - +
  • [10] Structural basis of Cas3 activation in type I-C CRISPR-Cas system
    Kim, Do Yeon
    Lee, So Yeon
    Ha, Hyun Ji
    Park, Hyun Ho
    NUCLEIC ACIDS RESEARCH, 2024, 52 (17) : 10563 - 10574