A Simulation Framework for Benchmarking EEG-Based Brain Connectivity Estimation Methodologies

被引:91
作者
Haufe, Stefan [1 ,2 ]
Ewald, Arne [3 ]
机构
[1] Columbia Univ, Lab Intelligent Imaging & Neural Comp, New York, NY 10027 USA
[2] Tech Univ Berlin, Machine Learning Dept, D-10587 Berlin, Germany
[3] Univ Med Ctr Hamburg Eppendorf, Dept Neurophysiol & Pathophysiol, D-20246 Hamburg, Germany
关键词
EEG; MEG; Brain connectivity; Validation; Simulation; Benchmark; Open source; CORTICAL FUNCTIONAL CONNECTIVITY; PARTIAL DIRECTED COHERENCE; SOURCE LOCALIZATION; INFORMATION-FLOW; ELECTRICAL-ACTIVITY; TIME-SERIES; EEG/MEG; MEG; MODELS; CONCORDANCE;
D O I
10.1007/s10548-016-0498-y
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Due to its high temporal resolution, electroencephalography (EEG) is widely used to study functional and effective brain connectivity. Yet, there is currently a mismatch between the vastness of studies conducted and the degree to which the employed analyses are theoretically understood and empirically validated. We here provide a simulation framework that enables researchers to test their analysis pipelines on realistic pseudo-EEG data. We construct a minimal example of brain interaction, which we propose as a benchmark for assessing a methodology's general eligibility for EEG-based connectivity estimation. We envision that this benchmark be extended in a collaborative effort to validate methods in more complex scenarios. Quantitative metrics are defined to assess a method's performance in terms of source localization, connectivity detection and directionality estimation. All data and code needed for generating pseudo-EEG data, conducting source reconstruction and connectivity estimation using baseline methods from the literature, evaluating performance metrics, as well as plotting results, are made publicly available. While this article covers only EEG modeling, we will also provide a magnetoencephalography version of our framework online.
引用
收藏
页码:625 / 642
页数:18
相关论文
共 109 条
[1]   Neuroelectromagnetic Forward Head Modeling Toolbox [J].
Acar, Zeynep Akalin ;
Makeig, Scott .
JOURNAL OF NEUROSCIENCE METHODS, 2010, 190 (02) :258-270
[2]  
[Anonymous], 1997, APPL MATH SCI
[3]  
[Anonymous], 2015, C P IEEE ENG MED BIO
[4]   Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data [J].
Astolfi, L ;
Cincotti, F ;
Mattia, D ;
Babiloni, C ;
Carducci, F ;
Basilisco, A ;
Rossini, PM ;
Salinari, S ;
Ding, L ;
Ni, Y ;
He, B ;
Babiloni, F .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (04) :920-932
[5]   Comparison of different cortical connectivity estimators for high-resolution EEG recordings [J].
Astolfi, Laura ;
Cincotti, Febo ;
Mattia, Donatella ;
Marciani, M. Grazia ;
Baccala, Luiz A. ;
Fallani, Fabrizio de Vico ;
Salinari, Serenella ;
Ursino, Mauro ;
Zavaglia, Melissa ;
Ding, Lei ;
Edgar, J. Christopher ;
Miller, Gregory A. ;
He, Bin ;
Babiloni, Fabio .
HUMAN BRAIN MAPPING, 2007, 28 (02) :143-157
[6]   Assessing cortical functional connectivity by partial directed coherence:: Simulations and application to real data [J].
Astolfi, Laura ;
Cincotti, Febo ;
Mattia, Donatella ;
Marciani, M. G. ;
Baccala, Luis A. ;
Fallani, Fabrizio de Vico ;
Salinari, Serenella ;
Ursino, Mauro ;
Zavaglia, Melissa ;
Babiloni, Fabio .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (09) :1802-1812
[7]   Partial directed coherence:: a new concept in neural structure determination [J].
Baccalá, LA ;
Sameshima, K .
BIOLOGICAL CYBERNETICS, 2001, 84 (06) :463-474
[8]   Evaluation of inverse methods and head models for EEG source localization using a human skull phantom [J].
Baillet, S ;
Riera, JJ ;
Marin, G ;
Mangin, JF ;
Aubert, J ;
Garnero, L .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (01) :77-96
[9]   Electromagnetic brain mapping [J].
Baillet, S ;
Mosher, JC ;
Leahy, RM .
IEEE SIGNAL PROCESSING MAGAZINE, 2001, 18 (06) :14-30
[10]   The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference [J].
Barnett, Lionel ;
Seth, Anil K. .
JOURNAL OF NEUROSCIENCE METHODS, 2014, 223 :50-68