A stable HLLC Riemann solver for relativistic magnetohydrodynamics

被引:17
作者
Kim, Jinho [1 ]
Balsara, Dinshaw S. [1 ]
机构
[1] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
Riemann solvers; HLLC; Relativistic MHD; IDEAL MAGNETOHYDRODYNAMICS; FLOWS; SCHEME; EULER;
D O I
10.1016/j.jcp.2014.04.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this short note we improve on an HLLC Riemann solver for relativistic magnetohydrodynamics (MHD). The improvement consists in realizing that density jumps as well as jumps in the transverse velocity can be safely incorporated into the HLLC Riemann solver for relativistic MHD. The iteration process described here is low cost, stable and fast-converging. It obviates the need to have one formulation when the longitudinal magnetic field is non-zero and another when it vanishes. Excellent operation is shown on several test problems. (C) 2014 Published by Elsevier Inc.
引用
收藏
页码:634 / 639
页数:6
相关论文
共 12 条
[1]   A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows [J].
Balsara, Dinshaw S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (22) :7476-7503
[2]   Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows [J].
Balsara, Dinshaw S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (06) :1970-1993
[3]   A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations [J].
Balsara, DS ;
Spicer, DS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :270-292
[4]   ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics [J].
Del Zanna, L. ;
Zanotti, O. ;
Bucciantini, N. ;
Londrillo, P. .
ASTRONOMY & ASTROPHYSICS, 2007, 473 (01) :11-30
[5]   An efficient shock-capturing central-type scheme for multidimensional relativistic flows - II. Magnetohydrodynamics [J].
Del Zanna, L ;
Bucciantini, N ;
Londrillo, P .
ASTRONOMY & ASTROPHYSICS, 2003, 400 (02) :397-413
[6]   An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics [J].
Gurski, KF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2165-2187
[7]   HLLC solver for ideal relativistic MHD [J].
Honkkila, V. ;
Janhunen, P. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 223 (02) :643-656
[8]   An HLLC Riemann solver for magneto-hydrodynamics [J].
Li, ST .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) :344-357
[9]   An HLLC Riemann solver for relativistic flows - II. Magnetohydrodynamics [J].
Mignone, A ;
Bodo, G .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 368 (03) :1040-1054
[10]   A five-wave Harten-Lax-van Leer Riemann solver for relativistic magnetohydrodynamics [J].
Mignone, A. ;
Ugliano, M. ;
Bodo, G. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 393 (04) :1141-1156