Incorporating Artificial Intelligence Into Stroke Care and Research

被引:30
作者
Ding, Lingling [1 ,2 ,3 ]
Liu, Chelsea [4 ]
Li, Zixiao [1 ,2 ,3 ]
Wang, Yongjun [1 ,2 ,3 ]
机构
[1] Capital Med Univ, Dept Neurol, Beijing Tiantan Hosp, 119 S Fourth Ring W Rd, Beijing 100070, Peoples R China
[2] China Natl Clin Res Ctr Neurol Dis, Beijing, Peoples R China
[3] Chinese Acad Med Sci, Res Unit Artificial Intelligence Cerebrovasc Dis, Beijing, Peoples R China
[4] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
基金
北京市自然科学基金; 国家重点研发计划;
关键词
algorithms; artificial intelligence; decision-making; deep learning; machine learning;
D O I
10.1161/STROKEAHA.120.031295
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
[No abstract available]
引用
收藏
页码:E351 / E354
页数:4
相关论文
共 10 条
[1]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[2]   Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study [J].
Chilamkurthy, Sasank ;
Ghosh, Rohit ;
Tanamala, Swetha ;
Biviji, Mustafa ;
Campeau, Norbert G. ;
Venugopal, Vasantha Kumar ;
Mahajan, Vidur ;
Rao, Pooja ;
Warier, Prashant .
LANCET, 2018, 392 (10162) :2388-2396
[3]   Atrial Fibrillation Burden Signature and Near-Term Prediction of Stroke A Machine Learning Analysis [J].
Han, Lichy ;
Askari, Mariam ;
Altman, Russ B. ;
Schmitt, Susan K. ;
Fan, Jun ;
Bentley, Jason P. ;
Narayan, Sanjiv M. ;
Turakhia, Mintu P. .
CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2019, 12 (10)
[4]   Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke [J].
Heo, JoonNyung ;
Yoon, Jihoon G. ;
Park, Hyungjong ;
Kim, Young Dae ;
Nam, Hyo Suk ;
Heo, Ji Hoe .
STROKE, 2019, 50 (05) :1263-1265
[5]  
Kim BJ, 2020, JAMA NEUROL, pe202804
[6]   A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound [J].
Lekadir, Karim ;
Galimzianova, Alfiia ;
Betriu, Angels ;
del Mar Vila, Maria ;
Igual, Laura ;
Rubin, Daniel L. ;
Fernandez, Elvira ;
Radeva, Petia ;
Napel, Sandy .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (01) :48-55
[7]   STROKE Towards artificial intelligence for clinical stroke care [J].
Leslie-Mazwi, Thabele M. ;
Lev, Michael H. .
NATURE REVIEWS NEUROLOGY, 2020, 16 (01) :5-6
[8]   Predicting Clinical Outcomes of Large Vessel Occlusion Before Mechanical Thrombectomy Using Machine Learning [J].
Nishi, Hidehisa ;
Oishi, Naoya ;
Ishii, Akira ;
Ono, Isao ;
Ogura, Takenori ;
Sunohara, Tadashi ;
Chihara, Hideo ;
Fukumitsu, Ryu ;
Okawa, Masakazu ;
Yamana, Norikazu ;
Imamura, Hirotoshi ;
Sadamasa, Nobutake ;
Hatano, Taketo ;
Nakahara, Ichiro ;
Sakai, Nobuyuki ;
Miyamoto, Susumu .
STROKE, 2019, 50 (09) :2379-2388
[9]   Deep learning [J].
Rusk, Nicole .
NATURE METHODS, 2016, 13 (01) :35-35
[10]   Automated deep-neural-network surveillance of cranial images for acute neurologic events [J].
Titano, Joseph J. ;
Badgeley, Marcus ;
Schefflein, Javin ;
Pain, Margaret ;
Su, Andres ;
Cai, Michael ;
Swinburne, Nathaniel ;
Zech, John ;
Kim, Jun ;
Bederson, Joshua ;
Mocco, J. ;
Drayer, Burton ;
Lehar, Joseph ;
Cho, Samuel ;
Costa, Anthony ;
Oermann, Eric K. .
NATURE MEDICINE, 2018, 24 (09) :1337-+