3-geometries and the Hamilton-Jacobi equation

被引:4
作者
García-Godínez, P
Newman, ET
Silva-Ortigoza, G
机构
[1] Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla 72570, Mexico
[2] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
关键词
D O I
10.1063/1.1753667
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the first part of this work we show that on the space of solutions of a certain class of systems of three second-order PDE's, u(alphaalpha)=Y(alpha,beta,u,u(alpha),u(beta)), u(betabeta)=Psi(alpha,beta,u,u(alpha),u(beta)) and u(alphabeta)=Omega(alpha,beta,u,u(alpha),u(beta)), a three-dimensional definite or indefinite metric, g(ab), can be constructed such that the three-dimensional Hamilton-Jacobi equation, g(ab)u(,a)u(,b)=1 holds. Furthermore, we remark that this structure is invariant under a subset of contact transformations. In the second part, we obtain analogous results for a certain class of third-order ordinary differential equation (ODE's), u(''')=Lambda(s,u,u('),u(')). In both cases, we apply our general results to the cental force problem. (C) 2004 American Institute of Physics.
引用
收藏
页码:2543 / 2559
页数:17
相关论文
共 25 条
  • [1] Bryant R., 1991, PROC S PURE MATH, V53, P33
  • [2] CARTAN E, 1938, CR HEBD ACAD SCI, V206, P1425
  • [3] Cartan E., 1924, Bulletin de la Societe Mathematique de France, V52, P205, DOI [10.24033/bsmf.1053, DOI 10.24033/BSMF.1053]
  • [4] CARTAN E, 1943, ANN SCI ECOLE NORM S, V60, P1
  • [5] CARTAN E, 1941, REV MAT HISPANO AM, V4, P1
  • [6] CHERN SS, 1940, SELECTED PAPERS
  • [7] Null surfaces formulation in three dimensions
    Forni, DM
    Iriondo, M
    Kozameh, CN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (08) : 5517 - 5534
  • [8] Dynamics of light cone cuts of null infinity
    Frittelli, S
    Kozameh, C
    Newman, ET
    [J]. PHYSICAL REVIEW D, 1997, 56 (08): : 4729 - 4744
  • [9] GR VIA CHARACTERISTIC SURFACES
    FRITTELLI, S
    KOZAMEH, C
    NEWMAN, ET
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) : 4984 - 5004
  • [10] Conformal Lorentzian metrics on the spaces of curves and 2-surfaces
    Frittelli, S
    Newman, ET
    Nurowski, P
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (16) : 3649 - 3659