Numerical test of hydrodynamic fluctuation theory in the Fermi-Pasta-Ulam chain

被引:91
作者
Das, Suman G. [1 ]
Dhar, Abhishek [2 ]
Saito, Keiji [3 ]
Mendl, Christian B. [4 ]
Spohn, Herbert [5 ]
机构
[1] Raman Res Inst, Bangalore 560080, Karnataka, India
[2] TIFR, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India
[3] Keio Univ, Dept Phys, Yokohama, Kanagawa 2238522, Japan
[4] Tech Univ Munich, Zentrum Math, D-85747 Garching, Germany
[5] Inst Adv Study, Princeton, NJ 08540 USA
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 01期
关键词
HEAT-CONDUCTION; OSCILLATORS; TRANSPORT;
D O I
10.1103/PhysRevE.90.012124
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recent work has developed a nonlinear hydrodynamic fluctuation theory for a chain of coupled anharmonic oscillators governing the conserved fields, namely, stretch, momentum, and energy. The linear theory yields two propagating sound modes and one diffusing heat mode, all three with diffusive broadening. In contrast, the nonlinear theory predicts that, at long times, the sound mode correlations satisfy Kardar-Parisi-Zhang scaling, while the heat mode correlations have Levy-walk scaling. In the present contribution we report on molecular dynamics simulations of Fermi-Pasta-Ulam chains to compute various spatiotemporal correlation functions and compare them with the predictions of the theory. We obtain very good agreement in many cases, but also some deviations.
引用
收藏
页数:9
相关论文
共 38 条
  • [1] Allen MP, 1987, COMPUTER SIMULATIONS, DOI DOI 10.2307/2938686
  • [2] Momentum conserving model with anomalous thermal conductivity in low dimensional systems
    Basile, Giada
    Bernardin, Cedric
    Olla, Stefano
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (20)
  • [3] Time-Scales to Equipartition in the Fermi-Pasta-Ulam Problem: Finite-Size Effects and Thermodynamic Limit
    Benettin, G.
    Ponno, A.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (04) : 793 - 812
  • [4] The Fermi-Pasta-Ulam problem: Fifty years of progress
    Berman, GP
    Izrailev, FM
    [J]. CHAOS, 2005, 15 (01)
  • [5] Anomalous heat conduction in a one-dimensional ideal gas
    Casati, G
    Prosen, T
    [J]. PHYSICAL REVIEW E, 2003, 67 (01): : 4
  • [6] Chen S, ARXIV12045933
  • [7] Diffusion of heat, energy, momentum, and mass in one-dimensional systems
    Chen, Shunda
    Zhang, Yong
    Wang, Jiao
    Zhao, Hong
    [J]. PHYSICAL REVIEW E, 2013, 87 (03):
  • [8] From anomalous energy diffusion to levy walks and heat conductivity in one-dimensional systems
    Cipriani, P
    Denisov, S
    Politi, A
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (24)
  • [9] Heat Conduction in the α-β Fermi-Pasta-Ulam Chain
    Das, Suman G.
    Dhar, Abhishek
    Narayan, Onuttom
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (1-2) : 204 - 213
  • [10] Self-consistent mode-coupling approach to one-dimensional heat transport
    Delfini, Luca
    Lepri, Stefano
    Livi, Roberto
    Politi, Antonio
    [J]. PHYSICAL REVIEW E, 2006, 73 (06):