Numerical approach and optimization of the combustion and gas dynamics in High Velocity Suspension Flame Spraying (HVSFS)

被引:28
作者
Dongmo, E. [1 ]
Killinger, A. [1 ]
Wenzelburger, M. [1 ]
Gadow, R. [1 ]
机构
[1] Univ Stuttgart, Inst Mfg Technol Ceram Components & Composites, D-70569 Stuttgart, Germany
关键词
High Velocity Suspension Flame Spraying; HVSFS; Propane fuel combustion; Ethanol evaporation and combustion; Three-phase flow; Numerical simulation; COATINGS; PERFORMANCE; TIO2;
D O I
10.1016/j.surfcoat.2008.12.006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The interest in submicron and nano-structured layers applied by thermal spray technologies on different surfaces has been significantly increased during the last decade. Conventional HVOF spraying processes are not suitable to achieve submicron and nano-particles. Therefore, High Velocity Suspension Flame Spraying (HVSFS) has been developed for the processing of nano-structured spray material to achieve dense surface layers in supersonic mode with a refined micro- or nano-structure, from which superior mechanical and physical properties are expected. However. the chemical and thermodynamic phenomena occurring in the HVSFS reacting flow field are a challenging, multidisciplinary issue. This study is intended to analyze and understand the HVSFS combustion and flow dynamic system on the basis of a CFD model and numerical calculation. The final aim is an optimization of the process parameters by variations during simulation experiments. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2139 / 2145
页数:7
相关论文
共 23 条
[1]   Investigation of High-Velocity Suspension Flame Sprayed (HVSFS) glass coatings [J].
Bolelli, Giovanni ;
Rauch, Johannes ;
Cannillo, Valeria ;
Killinger, Andreas ;
Lusvarghi, Luca ;
Gadow, Rainer .
MATERIALS LETTERS, 2008, 62 (17-18) :2772-2775
[2]   Analysis and optimization of the HVOF process by combined experimental and numerical approaches [J].
Dongmo, E. ;
Wenzelburger, A. ;
Gadow, R. .
SURFACE & COATINGS TECHNOLOGY, 2008, 202 (18) :4470-4478
[3]  
ETCHARTSALAS R, 2007, THERMAL SPRAY 2007 G, P621
[4]   Parameters controlling liquid plasma spraying:: Solutions, sols, or suspensions [J].
Fauchais, P. ;
Etchart-Salas, R. ;
Rat, V. ;
Coudert, J. F. ;
Caron, N. ;
Wittmann-Teneze, K. .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2008, 17 (01) :31-59
[5]   Performance of numerical spray combustion simulation [J].
Furuhata, T ;
Tanno, S ;
Miura, T ;
Ikeda, Y ;
Nakajima, T .
ENERGY CONVERSION AND MANAGEMENT, 1997, 38 (10-13) :1111-1122
[6]  
GADOW R, 2008, SURF COAT TECHNOL, V202
[7]   Thermal barrier coatings made by the solution precursor plasma spray process [J].
Gell, Maurice ;
Jordan, Eric H. ;
Teicholz, Matthew ;
Cetegen, Baki M. ;
Padture, Nitin P. ;
Xie, Liangde ;
Chen, Dianying ;
Ma, Xinqing ;
Roth, Jeffrey .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2008, 17 (01) :124-135
[8]   Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings [J].
Kassner, Holger ;
Siegert, Roberto ;
Hathiramani, Dag ;
Vassen, Robert ;
Stoever, Detlev .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2008, 17 (01) :115-123
[9]   High-Velocity Suspension Flame Spraying (HVSFS), a new approach for spraying nanoparticles with hypersonic speed [J].
Killinger, Andreas ;
Kuhn, Melanie ;
Gadow, Rainer .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (05) :1922-1929
[10]  
Koch C.C., 2006, Nanostructured materials: processing, properties and applications