On nonsingularity of circulant matrices

被引:6
|
作者
Chen, Zhangchi
机构
关键词
Circulant matrices; Cyclotomic polynomials; Communication theory; Coding;
D O I
10.1016/j.laa.2020.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Communication theory and Coding, it is expected that certain circulant matrices having k ones and k + 1 zeros in the first row are nonsingular. We prove that such matrices are always nonsingular when 2k + 1 is either a power of a prime, or a product of two distinct primes. For any other integer 2k + 1 we construct circulant matrices having determinant 0. The smallest singular matrix appears when 2k + 1 = 45. The possibility for such matrices to be singular is rather low, smaller than 10(-4) in this case. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:162 / 176
页数:15
相关论文
共 50 条
  • [21] Johnson-Lindenstrauss Lemma for Circulant Matrices
    Hinrichs, Aicke
    Vybiral, Jan
    RANDOM STRUCTURES & ALGORITHMS, 2011, 39 (03) : 391 - 398
  • [22] Approximation of high-dimensional kernel matrices by multilevel circulant matrices
    Song, Guohui
    Xu, Yuesheng
    JOURNAL OF COMPLEXITY, 2010, 26 (04) : 375 - 405
  • [23] Analysis of the Security of Compressed Sensing with Circulant Matrices
    Bianchi, T.
    Magli, E.
    2014 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS'14), 2014, : 173 - 178
  • [24] Remarks on circulant matrices and critical points of polynomials
    Lin, Minghua
    Xie, Mengyan
    Zhang, Jiao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (01)
  • [25] Some results on certain generalized circulant matrices
    Chengbo Lu
    Numerical Algorithms, 2015, 68 : 467 - 479
  • [26] Determinants of binomial-related circulant matrices
    Jantaramas, Trairat
    Jitman, Somphong
    Kaewsaard, Pornpan
    SPECIAL MATRICES, 2018, 6 (01): : 262 - 272
  • [27] Preliminary remarks on multigrid methods for circulant matrices
    Capizzano, SS
    Possio, CT
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 152 - 159
  • [28] New nonexistence results on circulant weighing matrices
    K. T. Arasu
    Daniel M. Gordon
    Yiran Zhang
    Cryptography and Communications, 2021, 13 : 775 - 789
  • [29] New nonexistence results on circulant weighing matrices
    Arasu, K. T.
    Gordon, Daniel M.
    Zhang, Yiran
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2021, 13 (05): : 775 - 789
  • [30] A NOTE ON DIOPHANTINE ALGEBRAIC EQUATIONS OF SQUARE CIRCULANT MATRICES
    Gauthier, Claude
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2024, 63 (06): : 505 - 516