On nonsingularity of circulant matrices

被引:6
|
作者
Chen, Zhangchi
机构
关键词
Circulant matrices; Cyclotomic polynomials; Communication theory; Coding;
D O I
10.1016/j.laa.2020.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Communication theory and Coding, it is expected that certain circulant matrices having k ones and k + 1 zeros in the first row are nonsingular. We prove that such matrices are always nonsingular when 2k + 1 is either a power of a prime, or a product of two distinct primes. For any other integer 2k + 1 we construct circulant matrices having determinant 0. The smallest singular matrix appears when 2k + 1 = 45. The possibility for such matrices to be singular is rather low, smaller than 10(-4) in this case. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:162 / 176
页数:15
相关论文
共 50 条
  • [1] ITERATES OF FUZZY CIRCULANT MATRICES
    HEMASINHA, R
    PAL, NR
    BEZDEK, JC
    FUZZY SETS AND SYSTEMS, 1993, 60 (02) : 199 - 206
  • [2] On circulant best matrices and their applications
    Georgiou, S
    Koukouvinos, C
    Seberry, J
    LINEAR & MULTILINEAR ALGEBRA, 2001, 48 (03) : 263 - 274
  • [3] Weak convergence in circulant matrices
    Cureg, E
    Mukherjea, A
    JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (04) : 983 - 1007
  • [4] On the circulant intuitionistic fuzzy matrices
    Emam, E. G.
    SOFT COMPUTING, 2021, 25 (06) : 4621 - 4628
  • [5] Weak Convergence in Circulant Matrices
    E. Cureg
    A. Mukherjea
    Journal of Theoretical Probability, 2005, 18 : 983 - 1007
  • [6] THE UNIT GROUP OF ALGEBRA OF CIRCULANT MATRICES
    Makhijani, N.
    Sharma, R. K.
    Srivastava, J. B.
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2014, 3 (04) : 13 - 16
  • [7] EIGENVALUES OF CIRCULANT MATRICES AND A CONJECTURE OF RYSER
    Euler, Reinhardt
    Gallardo, Luis H.
    Rahavandrainy, Olivier
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (05): : 751 - 759
  • [8] UNIT GROUP OF ALGEBRA OF CIRCULANT MATRICES
    Sharma, R. K.
    Yadav, Pooja
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2013, 2 (04) : 1 - 6
  • [9] The binary rank of circulant block matrices
    Haviv, Ishay
    Parnas, Michal
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 656 : 277 - 303
  • [10] On the sum of left and right circulant matrices
    Lettington, Matthew C.
    Schmidt, Karl Michael
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 658 : 62 - 85