On nonsingularity of circulant matrices

被引:6
作者
Chen, Zhangchi
机构
关键词
Circulant matrices; Cyclotomic polynomials; Communication theory; Coding;
D O I
10.1016/j.laa.2020.12.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Communication theory and Coding, it is expected that certain circulant matrices having k ones and k + 1 zeros in the first row are nonsingular. We prove that such matrices are always nonsingular when 2k + 1 is either a power of a prime, or a product of two distinct primes. For any other integer 2k + 1 we construct circulant matrices having determinant 0. The smallest singular matrix appears when 2k + 1 = 45. The possibility for such matrices to be singular is rather low, smaller than 10(-4) in this case. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:162 / 176
页数:15
相关论文
共 7 条
[1]  
Golub G., 2013, J HOPKINS STUDIES MA
[2]  
Ingleton AubreyWilliam., 1956, J. London Math. Soc, V31, P632, DOI DOI 10.1112/JLMS/S1-31.4.445
[3]  
Lang S., 2012, Algebra, V211
[4]  
Newton R.H.C., 1954, INDAG MATH, V57, P533
[5]  
Newton R.H.C., 1954, INDAG MATH, V57, P545
[6]  
Wan K., COMBINATION NETWORKS
[7]  
Wan K., LIMITES FONDAMENTALE