Exploiting Machine Learning for Predicting Nodal Status in Prostate Cancer Patients

被引:0
作者
Vallati, Mauro [1 ]
De Bari, Berardino [2 ]
Gatta, Roberto [3 ]
Buglione, Michela [2 ]
Magrini, Stefano M. [2 ]
Jereczek-Fossa, Barbara A. [4 ]
Bertoni, Filippo [5 ]
机构
[1] Univ Huddersfield, Sch Comp & Engn, Huddersfield HD1 3DH, W Yorkshire, England
[2] Univ Brescia, Dept Radiat Oncol, Brescia, Italy
[3] Univ Brescia, Dept Informat Engn, Brescia, Italy
[4] Univ Milan, European Inst Oncol, Dept Radiotherapy, Milan, Italy
[5] Hosp Modena, Dept Radiat Oncol, Modena, Italy
来源
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2013 | 2013年 / 412卷
关键词
Machine Learning; Classification; Medicine Applications; PATHOLOGICAL STAGE; PELVIC IRRADIATION; GLEASON SCORE; PHASE-III; RISK; ANTIGEN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prostate cancer is the second cause of cancer in males. The prophylactic pelvic irradiation is usually needed for treating prostate cancer patients with Subclinical Nodal Metestases. Currently, the physicians decide when to deliver pelvic irradiation in nodal negative patients mainly by using the Roach formula, which gives an approximate estimation of the risk of Subclinical Nodal Metestases. In this paper we study the exploitation of Machine Learning techniques for training models, based on several pre-treatment parameters, that can be used for predicting the nodal status of prostate cancer patients. An experimental retrospective analysis, conducted on the largest Italian database of prostate cancer patients treated with radical External Beam Radiation Therapy, shows that the proposed approaches can effectively predict the nodal status of patients.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 25 条
[1]   Impact of surgical staging in evaluating the radiotherapeutic outcome in RTOG #77-06, a phase III study for T1BN0M0 (A2) and T2N0M0 (B) prostate carcinoma [J].
Asbell, SO ;
Martz, KL ;
Shin, KH ;
Sause, WT ;
Doggett, RL ;
Perez, CA ;
Pilepich, MV .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 40 (04) :769-782
[2]  
Berthold MR, 2010, TEXTS COMPUT SCI, P1, DOI 10.1007/978-1-84882-260-3_1
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
Caruana Rich, 2008, P INT C MACH LEARN, P96, DOI DOI 10.1145/1390156.1390169
[5]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
[6]   Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer [J].
D'Amico, AV ;
Whittington, R ;
Malkowicz, SB ;
Schultz, D ;
Blank, K ;
Broderick, GA ;
Tomaszewski, JE ;
Renshaw, AA ;
Kaplan, I ;
Beard, CJ ;
Wein, A .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1998, 280 (11) :969-974
[7]  
Edge SB., 2010, AJCC CANC STAGING MA
[8]  
Fan W, 2003, THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, P51
[9]   Can predictive models for prostate cancer patients derived in the United States of America be utilized in European patients? A validation study of the Partin tables [J].
Graefen, M ;
Augustin, H ;
Karakiewicz, PI ;
Hammerer, PG ;
Haese, A ;
Palisaar, J ;
Blonski, J ;
Fernandez, S ;
Erbersdobler, A ;
Huland, H .
EUROPEAN UROLOGY, 2003, 43 (01) :6-10
[10]  
Hall M., 2009, SIGKDD Explorations, V11, P10, DOI DOI 10.1145/1656274.1656278