Emergent geometry from q-deformations of N=4 super Yang-Mills

被引:0
作者
Berenstein, David [1 ]
Correa, Diego H.
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[3] Ctr Estudios Cient, Valdivia, Chile
关键词
matrix models; AdS-CFT correspondence; penrose limit and pp wave background;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study BPS states in a marginal deformation of super Yang-Mills on R x S-3 using a quantum mechanical system of q-commuting matrices. We focus mainly on the case where the parameter q is a root of unity, so that the AdS dual of the field theory can be associated to an orbifold of AdS(5) x S-5. We show that in the large N limit, BPS states are described by density distributions of eigenvalues and we assign to these distributions a geometrical spacetime interpretation. We go beyond BPS configurations by turning on perturbative non-q-commuting excitations. Considering states in an appropriate BMN limit, we use a saddle point approximation to compute the BMN energy to all perturbative orders in the 't Hooft coupling. We also examine some BMN like states that correspond to twisted sector string states in the orbifold and we show that our geometrical interpretation of the system is consistent with the quantum numbers of the corresponding states under the quantum symmetry of the orbifold.
引用
收藏
页数:20
相关论文
共 36 条
[1]   Deformations of flows from type IIB supergravity [J].
Ahn, Changhyun ;
Vazquez-Poritz, Justin F. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (10) :3619-3640
[2]  
Beisert N, 2005, J HIGH ENERGY PHYS
[3]  
Beisert N, 2005, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2005/11/037
[4]  
Berenstein D, 2000, J HIGH ENERGY PHYS
[5]   Marginal and relevant deformations of N=4 field theories and non-commutative moduli spaces of vacua [J].
Berenstein, D ;
Jejjala, V ;
Leigh, RG .
NUCLEAR PHYSICS B, 2000, 589 (1-2) :196-248
[6]  
Berenstein D, 2006, J HIGH ENERGY PHYS
[7]   Deformations of N = 4 SYM and integrable spin chain models [J].
Berenstein, D ;
Cherkis, SA .
NUCLEAR PHYSICS B, 2004, 702 (1-2) :49-85
[8]  
Berenstein D, 2002, J HIGH ENERGY PHYS
[9]  
Berenstein D, 2006, J HIGH ENERGY PHYS
[10]  
Berenstein D, 2004, J HIGH ENERGY PHYS