Differential Activity and Expression Profile of Antioxidant Enzymes and Physiological Changes in Wheat (Triticum aestivum L.) Under Drought

被引:64
|
作者
Sheoran, Sonia [1 ]
Thakur, Vidisha [1 ]
Narwal, Sneh [1 ]
Turan, Rajita [1 ]
Mamrutha, H. M. [1 ]
Singh, Virender [1 ]
Tiwari, Vinod [1 ]
Sharma, Indu [1 ]
机构
[1] ICAR Indian Inst Wheat & Barley Res, Karnal 132001, Punjab, India
关键词
Antioxidant; Transcript profile; Water stress; Triticum aestivum; WATER-USE EFFICIENCY; LIPID-PEROXIDATION; SUPEROXIDE-DISMUTASE; OXIDATIVE STRESS; GENE-EXPRESSION; DEFENSE SYSTEM; TOLERANCE; ACCLIMATION; TEMPERATURE; CULTIVARS;
D O I
10.1007/s12010-015-1813-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Wheat crop may experience water deficit at crucial stages during its life cycle, which induces oxidative stress in the plants. The antioxidant status of the plant plays an important role in providing tolerance against the water stress. The objective of this study was to investigate the impact of water stress on physiological traits, antioxidant activity and transcript profile of antioxidant enzyme related genes in four wheat genotypes (C306, AKAW3717, HD2687, PBW343) at three crucial stages of plants under medium (75 % of field capacity) and severe stress (45 % of field capacity) in pots. Drought was applied by withholding water for 10 days at a particular growth stage viz. tillering, anthesis and 15 days after anthesis (15DAA). For physiological traits, a highly significant effect of water stress at a particular stage and genotypic variations for resistance to drought tolerance was observed. Under severe water stress, the malondialdehyde (MDA) content increased while the relative water content (RWC) and chlorophyll index decreased significantly in all the genotypes. The drought susceptibility index (DSI) of the genotypes varied from 0.18 to 1.9. The drought treatment at the tillering and anthesis stages was found more sensitive in terms of reduction in thousand grain weight (TGW) and grain yield. Antioxidant enzyme activities [superoxide dismutase (SOD) and peroxidase (POX)] increased with the decrease in osmotic potential in drought tolerant genotypes C306 and AKAW3717. Moreover, the transcript profile of Mn-SOD upregulated significantly and was consistent with the trend of the variation in SOD activity, which suggests that Mn-SOD might play an important role in drought tolerance.
引用
收藏
页码:1282 / 1298
页数:17
相关论文
共 50 条
  • [31] WHEAT (TRITICUM AESTIVUM L.) DROUGHT TOLERANCE INDICES UNDER WATER STRESS CONDITIONS
    Lal, K.
    Jatoi, W. A.
    Memon, S.
    Jatoi, I. A.
    Rind, S. N.
    Rajput, L.
    Khan, N. M.
    Khaskhali, I. A.
    Depar, M. S.
    Lund, M. I.
    Kaleri, M. H.
    Sarwar, M. K. S.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2024, 56 (01): : 232 - 245
  • [32] Foliar Spray of Silicon Confers Drought Tolerance in Wheat (Triticum aestivum L.) by Enhancing Morpho-Physiological and Antioxidant Potential
    Aurangzaib, Muhammad
    Ahmad, Zahoor
    Jalil, Muhammad Imran
    Nawaz, Fahim
    Shaheen, M. Rashid
    Ahmad, Maqshoof
    Hussain, Azhar
    Ejaz, Muhammad Kashif
    Tabassum, Muhammad Adnan
    SILICON, 2022, 14 (09) : 4793 - 4807
  • [33] Changes in activity of antioxidative enzymes in wheat (Triticum aestivum) seedlings under cold acclimation
    Scebba, F
    Sebastiani, L
    Vitagliano, C
    PHYSIOLOGIA PLANTARUM, 1998, 104 (04) : 747 - 752
  • [34] PHYSIOLOGICAL RESPONSES AND DROUGHT RESISTANCE INDEX OF NINE WHEAT (TRITICUM AESTIVUM L.) CULTIVARS UNDER DIFFERENT MOISTURE CONDITIONS
    Razzaq, Abdul
    Ali, Qasim
    Qayyum, Abdul
    Mahmood, Imran
    Ahmad, Muhammad
    Rasheed, Muhammad
    PAKISTAN JOURNAL OF BOTANY, 2013, 45 : 151 - 155
  • [35] Response of Antioxidant Enzymes of Winter Wheat (Triticum aestivum L.) to Shallow and Saline Groundwater Depths
    Kiremit, Mehmet Sait
    Arslan, Hakan
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2024, 210 (05)
  • [36] Physiological role and biofortification of zinc in wheat (Triticum aestivum L.)
    Shukla, Gyanika
    Sharma, Shiveta
    Gaurav, Akash
    Sharma, Shailendra
    PLANT PHYSIOLOGY REPORTS, 2022, 27 (04) : 665 - 679
  • [37] Physiological role and biofortification of zinc in wheat (Triticum aestivum L.)
    Gyanika Shukla
    Shiveta Sharma
    Akash Gaurav
    Shailendra Sharma
    Plant Physiology Reports, 2022, 27 : 665 - 679
  • [38] Physiological and molecular response under salinity stress in bread wheat (Triticum aestivum L.)
    Priyanka Singh
    Mahesh M. Mahajan
    Nagendra Kumar Singh
    Dinesh Kumar
    Kanika Kumar
    Journal of Plant Biochemistry and Biotechnology, 2020, 29 : 125 - 133
  • [39] Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.)
    Islam, Monirul
    Begum, Most Champa
    Kabir, Ahmad Humayan
    Alam, Mohammad Firoz
    JOURNAL OF PLANT INTERACTIONS, 2015, 10 (01) : 195 - 201
  • [40] Physiological and molecular response under salinity stress in bread wheat (Triticum aestivum L.)
    Singh, Priyanka
    Mahajan, Mahesh M.
    Singh, Nagendra Kumar
    Kumar, Dinesh
    Kumar, Kanika
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2020, 29 (01) : 125 - 133