BET protein inhibition mitigates acute myocardial infarction damage in rats via the TLR4/TRAF6/NF-κB pathway

被引:56
|
作者
Sun, Yangli [1 ]
Huang, Jie [1 ]
Song, Kunpeng [1 ]
机构
[1] Zhengzhou Univ, Zhengzhou Cent Hosp, Dept Cardiovasc Internal Med, Zhengzhou 450007, Henan, Peoples R China
关键词
acute myocardial infarction; bromodomain and extra-terminal family; toll-like receptor 4; TNF receptor-associated factor 6; nuclear factor-kappa B; TOLL-LIKE RECEPTOR; C-REACTIVE PROTEIN; BROMODOMAIN INHIBITION; RECOGNITION; DYSFUNCTION; ACTIVATION; CHROMATIN; STRATEGY; FAMILY;
D O I
10.3892/etm.2015.2789
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Acute myocardial infarction (AMI) is among the most serious cardiovascular diseases and is a leading cause of mortality in developed countries. Previous studies have indicated the central role played by the bromodomain (BRD) proteins, which belong to the BRD and extra-terminal (BET) family, in gene control during heart failure pathogenesis. In addition, BET inhibition has been shown to suppress cardiomyocyte hypertrophy. However, the role of BET proteins in myocardial infarction remains unclear. The present study aimed to investigate whether BETs inhibition mitigates AMI, and explore the molecular mechanism underlying this effect. A rat model of acute myocardial infarction was established, and rats were divided into the sham, AMI and AMI + JQ1 groups. JQ1, a well-known selective BRD inhibitor, was used to suppress BET domain family activity. The mRNA and protein expression levels of BRD2, BRD3 and BRD4 were evaluated using quantitative polymerase chain reaction and western blot analysis, respectively. In addition, the expression levels of markers of cardiac damage were determined using commercial kits. The results indicated that BRD2 and BRD4 mRNA and protein expression levels were significantly increased in the AMI group compared with those in the sham group. In addition, BET inhibition decreased AMI damage in vivo by reversing cardiac function injury, decreasing serum lactate dehydrogenase and creatine kinase-MB isozyme activity, in addition to decreasing the expression levels Of high-sensitivity C-reactive protein and interleukin-6. Furthermore, the results suggested that Toll-like receptor 4 (TLR4) signaling was activated by the increased expression of TLR4, TNF receptor-associated factor 6 (TRAF6) and nuclear factor (NF)-kappa B during AMI. However, JQ1 treatment suppressed TLR4 signaling activation. In conclusion, the present results demonstrated that the inhibition of BET family proteins suppresses AMI, and that this effect was partially mediated by the inhibition of TLR4/TRAF6/NF-kappa B signaling.
引用
收藏
页码:2319 / 2324
页数:6
相关论文
共 50 条
  • [21] Exploring the mechanism of Nav1.3 in the ION-CCI rat model based on the TLR4/TRAF6/NF-κB pathway
    Li, Xiangyu
    Liu, Yixin
    Shao, Mengci
    Wang, Jing
    Wang, Liecheng
    Wang, Yuanyin
    Xu, Wenhua
    NEUROSCIENCE LETTERS, 2024, 832
  • [22] MCPIP1 alleviates depressive-like behaviors in mice by inhibiting the TLR4/TRAF6/NF-κB pathway to suppress neuroinflammation
    An, Qi
    Xia, Jiejing
    Pu, Fanchun
    Shi, Shaobo
    MOLECULAR MEDICINE REPORTS, 2024, 29 (01)
  • [23] Wedelolactone Mitigates Alcoholic Steatohepatitis via Modulating the TLR4/MyD88/NF-κB Pathway
    Jiang, Tao
    Hu, Bingde
    Li, Yongxia
    Yu, Shuihong
    MEDIATORS OF INFLAMMATION, 2024, 2024
  • [24] Alprostadil alleviates liver injury in septic rats via TLR4/NF-κB pathway
    Wang, M.
    Cai, X-F
    Zhang, S-M
    Xia, S-Y
    Du, W-H
    Ma, Y-L
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2021, 25 (03) : 1592 - 1599
  • [25] RETRACTION: Rosiglitazone alleviates myocardial apoptosis in rats with acute myocardial infarction via inhibiting TLR4/NF-κB signaling pathway (Retraction of Vol 19, Pg 2491, 2020)
    Ma, Hongzhong
    Du, Juan
    Feng, Xiaoli
    Zhang, Yingjun
    Wang, Haihuan
    Ding, Suchun
    Huang, Aijie
    Ma, Jiahai
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2021, 22 (03)
  • [26] Astragaloside IV prevents acute myocardial infarction by inhibiting the TLR4/MyD88/NF-κB signaling pathway
    Shi, Hui
    Zhou, Peng
    Gao, Ge
    Liu, Pei-pei
    Wang, Shu-shu
    Song, Rui
    Zou, Ying-ying
    Yin, Gang
    Wang, Liang
    JOURNAL OF FOOD BIOCHEMISTRY, 2021, 45 (07)
  • [27] AMPA receptor inhibition alleviates inflammatory response and myocardial apoptosis after myocardial infarction by inhibiting TLR4/NF-κB signaling pathway
    Li, Zixuan
    Yu, Zhili
    Cui, Shengyu
    Hu, Shan
    Li, Bin
    Chen, Tao
    Qu, Chuan
    Yang, Bo
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2024, 133
  • [28] Inhibition of myocardial hypertrophy by magnesium isoglycyrrhizinate through the TLR4/NF-κB signaling pathway in mice
    Ma, Donglai
    Zhang, Jianping
    Zhang, Yuanyuan
    Zhang, Xuan
    Han, Xue
    Song, Tao
    Zhang, Ying
    Chu, Li
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2018, 55 : 237 - 244
  • [29] Storax protected primary cortical neurons from oxygen-glucose deprivation/reoxygenation injury via inhibiting the TLR4/TRAF6/NF-?B signaling pathway
    Li, Lin
    Yue, Shaoqian
    Han, Rui
    Yu, Yajun
    Zhang, Peng
    Lv, Ling
    Zhu, Jinqiang
    Zhou, Min
    Fan, Xiang
    Zhang, Han
    BRAIN RESEARCH, 2022, 1792
  • [30] MicroRNA 322-5p reduced neuronal inflammation via the TLR4/TRAF6/NF-κB axis in a rat epilepsy model
    Zhou, Qin
    Wang, Qiong
    He, Baomei
    Kong, Haibo
    Luo, Huanjun
    Wang, Xiaowei
    Wang, Wenlan
    OPEN MEDICINE, 2022, 17 (01): : 907 - 914