Convergence analysis of the Chebyshev-Legendre spectral method for a class of Fredholm fractional integro-differential equations

被引:6
作者
Yousefi, A. [1 ]
Javadi, S. [1 ]
Babolian, E. [1 ]
Moradi, E. [1 ]
机构
[1] Kharazmi Univ, Fac Math Sci & Comp, Dept Comp Sci, Tehran, Iran
关键词
Chebyshev-Legendre spectral method; Caputo derivative; Fractional integro-differential equations; Convergence analysis; QUADRATURE TAU METHOD; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS; FAST ALGORITHM;
D O I
10.1016/j.cam.2019.02.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze a spectral Chebyshev-Legendre approximation for fractional order integro-differential equations of Fredholm type. The fractional derivative is described in the Caputo sense. Our proposed method is illustrated by considering some examples whose exact solutions are available. We prove that the error of the approximate solution decays exponentially in L-2-norm. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 110
页数:14
相关论文
共 35 条
[1]  
Ahmed S., 2011, Applied Mathematical Sciences, V5, P1765
[2]   A FAST ALGORITHM FOR THE EVALUATION OF LEGENDRE EXPANSIONS [J].
ALPERT, BK ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (01) :158-179
[3]  
[Anonymous], 2011, Spectral Methods, DOI [DOI 10.1007/978, DOI 10.1007/978-3-540-71041-7, 10.1007/978-3-540-71041-7]
[4]   Solution of fractional differential equations by using differential transform method [J].
Arikoglu, Aytac ;
Ozkol, Ibrahim .
CHAOS SOLITONS & FRACTALS, 2007, 34 (05) :1473-1481
[5]   A quadrature tau method for fractional differential equations with variable coefficients [J].
Bhrawy, A. H. ;
Alofi, A. S. ;
Ezz-Eldien, S. S. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (12) :2146-2152
[6]   A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals [J].
Bhrawy, Ali H. ;
Alghamdi, Mohammed A. .
BOUNDARY VALUE PROBLEMS, 2012,
[7]   Efficient algorithms for solving a fourth-order equation with the spectral-Galerkin method [J].
Bjorstad, PE ;
Tjostheim, BP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (02) :621-632
[8]  
Canuto C, 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[9]   CONVERGENCE ANALYSIS OF THE JACOBI SPECTRAL-COLLOCATION METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH A WEAKLY SINGULAR KERNEL [J].
Chen, Yanping ;
Tang, Tao .
MATHEMATICS OF COMPUTATION, 2010, 79 (269) :147-167
[10]   A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order [J].
Doha, E. H. ;
Bhrawy, A. H. ;
Ezz-Eldien, S. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (05) :2364-2373