Novel autoregressive basis structure model for short-term forecasting of customer electricity demand

被引:0
作者
Bennett, Christopher [1 ]
Stewart, Rodney [1 ]
Lu, Junwei [1 ]
机构
[1] Griffith Univ, Griffith Sch Engn, Gold Coast, Australia
来源
2013 IEEE TENCON SPRING CONFERENCE | 2013年
关键词
forecasting; residential premises; battery energy storage; STATCOM; peak demand reduction; low voltage network; NEURAL-NETWORKS; LOAD;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes the method of a prototype forecast component of the energy resource management control algorithm for STATCOMs with battery energy storage. It is desired to be computationally efficient and of minimal complexity due to the desired purposes of forecasting each load in a LV network. The forecast model is comprised of a basis structure selected from observed electricity demand data and an electricity demand difference forecasting component estimated by the autoregressive method. The produced forecasting model had a R-2 of 0.65 and a standard error of 368.55 W. During validation of the model, discrepancies between the forecasted and observed electricity demand profiles were observed. To overcome forecast model limitations, future work will involve more precise clustering of demand profiles according to additional temporal and environmental variables. This is to enable forecasts under a more diverse range of electricity demand profiles. The final developed forecasting model will be a core component of the firmware controlling STATCOMS with energy storage systems.
引用
收藏
页码:62 / 67
页数:6
相关论文
共 50 条
  • [21] Short-term water demand forecasting: a review
    Ghannam, Safa
    Hussain, Farookh
    AUSTRALASIAN JOURNAL OF WATER RESOURCES, 2024,
  • [22] District Heating Demand Short-Term Forecasting
    Petrichenko, Roman
    Baltputnis, Karlis
    Sauhats, Antans
    Sobolevsky, Dimitry
    2017 1ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2017 17TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2017,
  • [23] Short-term municipal water demand forecasting
    Bougadis, J
    Adamowski, K
    Diduch, R
    HYDROLOGICAL PROCESSES, 2005, 19 (01) : 137 - 148
  • [24] Short-term forecasting of district heating demand
    Petrichenko, Roman
    Sobolevsky, Dmitry
    Sauhats, Antans
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2018,
  • [25] A short-term water demand forecasting model using multivariate long short-term memory with meteorological data
    Zanfei, Ariele
    Brentan, Bruno Melo
    Menapace, Andrea
    Righetti, Maurizio
    JOURNAL OF HYDROINFORMATICS, 2022, 24 (05) : 1053 - 1065
  • [26] Short-Term Demand Forecasting for on-Demand Mobility Service
    Qian, Xinwu
    Ukkusuri, Satish V.
    Yang, Chao
    Yan, Fenfan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 1019 - 1029
  • [27] Improving Model Generalization for Short-Term Customer Load Forecasting With Causal Inference
    Wang, Zhenyi
    Zhang, Hongcai
    Yang, Ruixiong
    Chen, Yong
    IEEE TRANSACTIONS ON SMART GRID, 2025, 16 (01) : 424 - 436
  • [28] Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network
    Kim, Hyunsoo
    Jeong, Jiseok
    Kim, Changwan
    MATHEMATICS, 2022, 10 (23)
  • [29] Election of Variables and Short-term Forecasting of Electricity Demand Based on Backpropagation Artificial Neural Networks
    Serrano-Guerrero, Xavier
    Prieto-Galarza, Ricardo
    Huilcatanda, Esteban
    Cabrera-Zeas, Juan
    Escriva-Escriva, Guillermo
    2017 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2017,
  • [30] Hybrid Forecasting Model for Short-Term Electricity Market Prices with Renewable Integration
    Osorio, Gerardo J.
    Lotfi, Mohamed
    Shafie-khah, Miadreza
    Campos, Vasco M. A.
    Catalao, Joao P. S.
    SUSTAINABILITY, 2019, 11 (01)