A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus

被引:81
作者
Barutcu, A. Rasim [1 ,2 ]
Maass, Philipp G. [1 ]
Lewandowski, Jordan P. [1 ,3 ]
Weiner, Catherine L. [1 ,2 ,3 ,4 ]
Rinn, John L. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[2] Broad Inst Massachusetts Inst Technol & Harvard, Cambridge, MA 02142 USA
[3] Beth Israel Deaconess Med Ctr, Dept Pathol, Boston, MA 02215 USA
[4] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[5] Univ Colorado, BioFrontiers Inst, Dept Biochem, Boulder, CO 80301 USA
来源
NATURE COMMUNICATIONS | 2018年 / 9卷
关键词
INACTIVE X-CHROMOSOME; CHROMATIN DOMAINS; GENOME TOPOLOGY; 3D GENOME; ORGANIZATION; RNA; EXPRESSION; PRINCIPLES; EVOLUTION; ELEMENTS;
D O I
10.1038/s41467-018-03614-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conformation capture (Hi-C), we focus on one TAD boundary on chromosome X harboring similar to 15 CTCF binding sites and located at the long non-coding RNA (lncRNA) locus Firre. Specifically, this TAD boundary is invariant across evolution, tissues, and temporal dynamics of X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner. In contrast, Firre's deletion disrupts the chromatin super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation.
引用
收藏
页数:11
相关论文
共 70 条
  • [1] Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci
    Amaral, Paulo P.
    Leonardi, Tommaso
    Han, Namshik
    Vire, Emmanuelle
    Gascoigne, Dennis K.
    Arias-Carrasco, Raul
    Buscher, Magdalena
    Pandolfini, Luca
    Zhang, Anda
    Pluchino, Stefano
    Maracaja-Coutinho, Vinicius
    Nakaya, Helder, I
    Hemberg, Martin
    Shiekhattar, Ramin
    Enright, Anton J.
    Kouzarides, Tony
    [J]. GENOME BIOLOGY, 2018, 19
  • [2] Mapping the mouse Allelome reveals tissue-specific regulation of allelic expression
    Andergassen, Daniel
    Dotter, Christoph P.
    Wenzel, Daniel
    Sigl, Verena
    Bammer, Philipp C.
    Muckenhuber, Markus
    Mayer, Daniela
    Kulinski, Tomasz M.
    Theussl, Hans-Christian
    Penninger, Josef M.
    Bock, Christoph
    Barlow, Denise P.
    Pauler, Florian M.
    Hudson, Quanah J.
    [J]. ELIFE, 2017, 6
  • [3] The connection between BRG1, CTCF and topoisomerases at TAD boundaries
    Barutcu, A. Rasim
    Lian, Jane B.
    Stein, Janet L.
    Stein, Gary S.
    Imbalzano, Anthony N.
    [J]. NUCLEUS, 2017, 8 (02) : 150 - 155
  • [4] SMARCA4 regulates gene expression and higher order chromatin structure in proliferating mammary epithelial cells
    Barutcu, A. Rasim
    Lajoie, Bryan R.
    Fritz, Andrew J.
    McCord, Rachel P.
    Nickerson, Jeffrey A.
    van Wijnen, Andre J.
    Lian, Jane B.
    Stein, Janet L.
    Dekker, Job
    Stein, Gary S.
    Imbalzano, Anthony N.
    [J]. GENOME RESEARCH, 2016, 26 (09) : 1188 - 1201
  • [5] YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment
    Beagan, Jonathan A.
    Duong, Michael T.
    Titus, Katelyn R.
    Zhou, Linda
    Cao, Zhendong
    Ma, Jingjing
    Lachanski, Caroline V.
    Gillis, Daniel R.
    Phillips-Cremins, Jennifer E.
    [J]. GENOME RESEARCH, 2017, 27 (07) : 1139 - 1152
  • [6] Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation
    Belaghzal, Houda
    Dekker, Job
    Gibcus, Johan H.
    [J]. METHODS, 2017, 123 : 56 - 65
  • [7] Bonora G., 2017, PREPRINT
  • [8] Condensin-driven remodelling of X chromosome topology during dosage compensation
    Crane, Emily
    Bian, Qian
    McCord, Rachel Patton
    Lajoie, Bryan R.
    Wheeler, Bayly S.
    Ralston, Edward J.
    Uzawa, Satoru
    Dekker, Job
    Meyer, Barbara J.
    [J]. NATURE, 2015, 523 (7559) : 240 - U299
  • [9] Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation
    da Rocha, Simao T.
    Heard, Edith
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2017, 24 (03) : 197 - 204
  • [10] Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture
    Darrow, Emily M.
    Huntley, Miriam H.
    Dudchenko, Olga
    Stamenova, Elena K.
    Durand, Neva C.
    Sun, Zhuo
    Huang, Su-Chen
    Sanborn, Adrian L.
    Machol, Ido
    Shamim, Muhammad
    Seberg, Andrew P.
    Lander, Eric S.
    Chadwick, Brian P.
    Aiden, Erez Lieberman
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (31) : E4504 - E4512