Beam wander of partially coherent Airy beams

被引:18
|
作者
Wen, Wei [1 ,3 ]
Chu, Xiuxiang [2 ]
机构
[1] Huaihua Univ, Dept Phys & Informat Engn, Huaihua 418008, Peoples R China
[2] Zhejiang Agr & Forestry Univ, Sch Sci, Linan 311300, Peoples R China
[3] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
beam wander; Airy beam; partial coherence; ATMOSPHERIC-TURBULENCE; DARK HOLLOW; PROPAGATION; GENERATION; SCINTILLATION; CHANNEL; PHASE;
D O I
10.1080/09500340.2014.887154
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The beam wander of a partially coherent Airy beam in a turbulent atmosphere was investigated. By using the extended Huygens-Fresnel integral, as analytical expression is derived for the second-order moment of a partially coherent Airy beam. Based on the theory proposed by Andrews, a general expression is obtained for the beam wander of a partially coherent Airy beam. With the help of the expression, various factors which impact on the beam wander are illustrated numerically. The results show that the beam wander of a partially coherent Airy beam decreases with the increase of the characteristic scale and the decrease of the coherent length or the exponent truncation factor. The value of the beam wander is a maximum when the exponent truncation factor is 0.63, no matter what the coherent lengths are. Our results provide an effective way to control the beam wander of a partially coherent Airy beam in practice.
引用
收藏
页码:379 / 384
页数:6
相关论文
empty
未找到相关数据