siRNA-Targeting Transforming Growth Factor-β Type I Receptor Reduces Wound Scarring and Extracellular Matrix Deposition of Scar Tissue

被引:62
|
作者
Wang, Yi-Wen [1 ,2 ]
Liou, Nien-Hsien [3 ]
Cherng, Juin-Hong [4 ]
Chang, Shu-Jen [5 ]
Ma, Kuo-Hsing [3 ]
Fu, Earl [4 ]
Liu, Jiang-Chuan [3 ]
Dai, Niann-Tzyy [6 ]
机构
[1] Natl Def Med Ctr, Grad Inst Med Sci, Taipei, Taiwan
[2] Triserv Gen Hosp, Burn Ctr, Taipei 114, Taiwan
[3] Natl Def Med Ctr, Dept Biol & Anat, Taipei, Taiwan
[4] Natl Def Med Ctr, Sch Dent, Taipei, Taiwan
[5] Natl Yang Ming Univ, Dept Dent, Taipei 112, Taiwan
[6] Triserv Gen Hosp, Dept Plast & Reconstruct Surg, Taipei 114, Taiwan
关键词
TGF-BETA; HYPERTROPHIC SCAR; KELOID FIBROBLASTS; DERMAL FIBROBLASTS; COLLAGEN-SYNTHESIS; SMAD3; EXPRESSION; INDUCED FIBROSIS; ALK5; INHIBITOR; ANTIBODY; THERAPEUTICS;
D O I
10.1038/jid.2014.84
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Hypertrophic scarring is related to persistent activation of transforming growth factor-beta (TGF-beta)/Smad signaling. In the TGF-beta/Smad signaling cascade, the TGF-beta type I receptor (TGFBRI) phosphorylates Smad proteins to induce fibroblast proliferation and extracellular matrix deposition. In this study, we inhibited TGFBRI gene expression via TGFBRI small interfering RNA (siRNA) to reduce fibroblast proliferation and extracellular matrix deposition. Our results demonstrate that downregulating TGFBRI expression in cultured human hypertrophic scar fibroblasts significantly suppressed cell proliferation and reduced type I collagen, type III collagen, fibronectin, and connective tissue growth factor (CTGF) mRNA, and type I collagen and fibronectin protein expression. In addition, we applied TGFBRI siRNA to wound granulation tissue in a rabbit model of hypertrophic scarring. Downregulating TGFBRI expression reduced wound scarring, the extracellular matrix deposition of scar tissue, and decreased CTGF and cc-smooth muscle actin mRNA expression in vivo. These results suggest that TGFBRI siRNA could be applied clinically to prevent hypertrophic scarring.
引用
收藏
页码:2016 / 2025
页数:10
相关论文
共 50 条
  • [1] Activation of peroxisome proliferator-activated receptor-γ inhibits transforming growth factor-β1 induction of connective tissue growth factor and extracellular matrix in hypertrophic scar fibroblasts in vitro
    Zhang, Guo-You
    Cheng, Tao
    Zheng, Ming-Hua
    Yi, Cheng-Gang
    Pan, Hua
    Li, Zhi-Jie
    Chen, Xing-Long
    Yu, Qing
    Jiang, Liang-Fu
    Zhou, Fei-Ya
    Li, Xiao-Yang
    Yang, Jing-Quan
    Chu, Ting-Gang
    Gao, Wei-Yang
    ARCHIVES OF DERMATOLOGICAL RESEARCH, 2009, 301 (07) : 515 - 522
  • [2] Extracellular matrix-induced transforming growth factor-β receptor signaling dynamics
    Garamszegi, N.
    Garamszegi, S. P.
    Samavarchi-Tehrani, P.
    Walford, E.
    Schneiderbauer, M. M.
    Wrana, J. L.
    Scully, S. P.
    ONCOGENE, 2010, 29 (16) : 2368 - 2380
  • [3] Activation of peroxisome proliferator-activated receptor-γ inhibits transforming growth factor-β1 induction of connective tissue growth factor and extracellular matrix in hypertrophic scar fibroblasts in vitro
    Guo-You Zhang
    Tao Cheng
    Ming-Hua Zheng
    Cheng-Gang Yi
    Hua Pan
    Zhi-Jie Li
    Xing-Long Chen
    Qing Yu
    Liang-Fu Jiang
    Fei-Ya Zhou
    Xiao-Yang Li
    Jing-Quan Yang
    Ting-Gang Chu
    Wei-Yang Gao
    Archives of Dermatological Research, 2009, 301 : 515 - 522
  • [4] Changes of Transforming Growth Factor-β1 and Extracellular Matrix in the Wound Healing Process of Rats Infected With Pseudomonas aeruginosa
    Zhang, Lianbo
    Wu, Zhuoxia
    Qin, Haiyan
    Chen, Wanying
    Zhang, Guang
    WOUNDS-A COMPENDIUM OF CLINICAL RESEARCH AND PRACTICE, 2014, 26 (10): : 293 - 300
  • [5] Palm oil tocotrienol rich fraction reduces extracellular matrix production by inhibiting transforming growth factor-β1 in human intestinal fibroblasts
    Luna, Jeroni
    Carme Masamunt, Maria
    Llach, Josep
    Delgado, Salvadora
    Sans, Miquel
    CLINICAL NUTRITION, 2011, 30 (06) : 858 - 864
  • [6] Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-β and Runx2 in bone is required for hearing
    Chang, Jolie L.
    Brauer, Delia S.
    Johnson, Jacob
    Chen, Carol G.
    Akil, Omar
    Balooch, Guive
    Humphrey, Mary Beth
    Chin, Emily N.
    Porter, Alexandra E.
    Butcher, Kristin
    Ritchie, Robert O.
    Schneider, Richard A.
    Lalwani, Anil
    Derynck, Rik
    Marshall, Grayson W.
    Marshall, Sally J.
    Lustig, Lawrence
    Alliston, Tamara
    EMBO REPORTS, 2010, 11 (10) : 765 - 771
  • [7] Latent transforming growth factor-β binding proteins (LTBPs) -: structural extracellular matrix proteins for targeting TGF-β action
    Saharinen, J
    Hyytiäinen, M
    Taipale, J
    Keski-Oja, J
    CYTOKINE & GROWTH FACTOR REVIEWS, 1999, 10 (02) : 99 - 117
  • [8] Progranulin Promotes Bleomycin-Induced Skin Sclerosis by Enhancing Transforming Growth Factor-β/Smad3 Signaling through Up-Regulation of Transforming Growth Factor-β Type I Receptor
    Yang, Ting
    Zhang, Xuemei
    Chen, Aijun
    Xiao, Yunju
    Sun, Si
    Yan, Jurong
    Cao, Yuwei
    Chen, Jin
    Li, Fengzeng
    Zhang, Qun
    Huang, Kun
    AMERICAN JOURNAL OF PATHOLOGY, 2019, 189 (08) : 1582 - 1593
  • [9] Design, synthesis, and evaluation of novel 4-thiazolylimidazoles as inhibitors of transforming growth factor-β type I receptor kinase
    Amada, Hideaki
    Sekiguchi, Yoshinori
    Ono, Naoya
    Matsunaga, Yuko
    Koami, Takeshi
    Asanuma, Hajime
    Shiozawa, Fumiyasu
    Endo, Mayumi
    Ikeda, Akiko
    Aoki, Mari
    Fujimoto, Natsuko
    Wada, Reiko
    Sato, Masakazu
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2012, 22 (05) : 2024 - 2029
  • [10] Modulation of the transforming growth factor-β1-induced Smad phosphorylation by the extracellular matrix receptor β1-integrin
    Hamajima, Hiroshi
    Ozaki, Iwata
    Zhang, Hao
    Iwane, Shinji
    Kawaguchi, Yasunori
    Eguchi, Yuichiro
    Matsuhashi, Sachiko
    Mizuta, Toshihiko
    Matsuzaki, Koichi
    Fujimoto, Kazuma
    INTERNATIONAL JOURNAL OF ONCOLOGY, 2009, 35 (06) : 1441 - 1447