A Machine Learning Model for Exploring Aberrant Functional Network Connectivity Transition in Schizophrenia

被引:0
|
作者
Sendi, Mohammad S. E. [1 ,2 ,3 ,5 ]
Zendehrouh, Elaheh [4 ]
Fu, Zening [4 ,5 ]
Mahmoudi, Babak [1 ,2 ,6 ]
Miller, Robyn L. [4 ,5 ]
Calhoun, Vince D. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30313 USA
[4] Georgia State Univ, Atlanta, GA 30302 USA
[5] Emory Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Georgia State Univ, Georgia Inst Technol, Atlanta, GA 30303 USA
[6] Emory Univ, Dept Biomed Informat, Atlanta, GA 30332 USA
来源
2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020) | 2020年
关键词
Schizophrenia; resting-state fMRI; dynamic functional network connectivity; machine learning; feature learning; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Schizophrenia (SZ) is a severe neuropsychiatric disorder with a hallmark of functional dysconnectivity between numerous brain regions. With an implicit assumption of stationary brain interactions during the scanning period, most of the resting-state functional magnetic resonance imaging (fMRI) studies are conducted on static functional network connectivity (sFNC). Dynamic functional network connectivity (dFNC) that explores temporal patterns of functional connectivity (FC) might provide additional information to its static counterpart. In this work, we first estimate latent features (called connectivity states) by applying k-means clustering on dFNC. Next, using the estimated latent features, we trained and tested a classifier, which can differentiate SZ from healthy control (HC) subjects with 71% accuracy. Using a feature selection method embedded in the classifier, we have highlighted the role of transition probabilities between states as potential biomarkers and identified the role of lightly modularized transient connectivity state in pulling healthy subjects out of both highly modularized and very disconnected states. This will offer some new understandings about the way the healthy brain shifts between the most and the least connected states of whole brain connectivity.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 50 条
  • [31] ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions from resting state fMRI data of patients with Schizophrenia
    Gallos, Ioannis K.
    Gkiatis, Kostakis
    Matsopoulos, George K.
    Siettos, Constantinos
    AIMS NEUROSCIENCE, 2021, 8 (02) : 295 - 321
  • [32] External Validation of a Machine Learning Model for Schizophrenia Classification
    He, Yupeng
    Sakuma, Kenji
    Kishi, Taro
    Li, Yuanying
    Matsunaga, Masaaki
    Tanihara, Shinichi
    Iwata, Nakao
    Ota, Atsuhiko
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (10)
  • [33] Aberrant dynamic functional network connectivity in vestibular migraine patients without peripheral vestibular lesion
    Chen, Zhengwei
    Liu, Haiyan
    Wei, Xiu-e
    Wang, Quan
    Liu, Yueji
    Hao, Lei
    Lin, Cunxin
    Xiao, Lijie
    Rong, Liangqun
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2023, 280 (06) : 2993 - 3003
  • [34] Aberrant dynamic functional network connectivity in vestibular migraine patients without peripheral vestibular lesion
    Zhengwei Chen
    Haiyan Liu
    Xiu-e Wei
    Quan Wang
    Yueji Liu
    Lei Hao
    Cunxin Lin
    Lijie Xiao
    Liangqun Rong
    European Archives of Oto-Rhino-Laryngology, 2023, 280 : 2993 - 3003
  • [35] Aberrant Cortical Sources And Functional Connectivity During Facial And Body Language Recognition In Schizophrenia
    Umesh, S.
    Tikka, Sai Krishna
    Babu, Venkatesh G. M.
    Goyal, Nishant
    INDIAN JOURNAL OF PSYCHIATRY, 2018, 60 (05) : 165 - 165
  • [36] Aberrant functional connectivity between the thalamus and visual cortex is related to attentional impairment in schizophrenia
    Yamamoto, Maeri
    Kushima, Itaru
    Suzuki, Ryohei
    Branko, Aleksic
    Kawano, Naoko
    Inada, Toshiya
    Iidaka, Tetsuya
    Ozaki, Norio
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2018, 278 : 35 - 41
  • [37] Nicotine restores functional connectivity of the ventral attention network in schizophrenia
    Smucny, Jason
    Olincy, Ann
    Tregellas, Jason R.
    NEUROPHARMACOLOGY, 2016, 108 : 144 - 151
  • [38] Connectivity strength of the EEG functional network in schizophrenia and bipolar disorder
    Cea-Canas, Benjamin
    Gomez-Pilar, Javier
    Nunez, Pablo
    Rodriguez-Vazquez, Eva
    de Uribe, Nieves
    Diez, Alvaro
    Perez-Escudero, Adela
    Molina, Vicente
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2020, 98
  • [39] Altered Domain Functional Network Connectivity Strength and Randomness in Schizophrenia
    Vergara, Victor M.
    Damaraju, Eswar
    Turner, Jessica A.
    Pearlson, Godfrey
    Belger, Aysenil
    Mathalon, Daniel H.
    Potkin, Steven G.
    Preda, Adrian
    Vaidya, Jatin G.
    van Erp, Theo G. M.
    McEwen, Sarah
    Calhoun, Vince D.
    FRONTIERS IN PSYCHIATRY, 2019, 10
  • [40] Aberrant Brain Connectivity in Schizophrenia Detected via a Fast Gaussian Graphical Model
    Zhang, Aiying
    Fang, Jian
    Liang, Faming
    Calhoun, Vince D.
    Wang, Yu-Ping
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (04) : 1479 - 1489