A Machine Learning Model for Exploring Aberrant Functional Network Connectivity Transition in Schizophrenia

被引:0
|
作者
Sendi, Mohammad S. E. [1 ,2 ,3 ,5 ]
Zendehrouh, Elaheh [4 ]
Fu, Zening [4 ,5 ]
Mahmoudi, Babak [1 ,2 ,6 ]
Miller, Robyn L. [4 ,5 ]
Calhoun, Vince D. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[2] Emory Univ, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30313 USA
[4] Georgia State Univ, Atlanta, GA 30302 USA
[5] Emory Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Georgia State Univ, Georgia Inst Technol, Atlanta, GA 30303 USA
[6] Emory Univ, Dept Biomed Informat, Atlanta, GA 30332 USA
来源
2020 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI 2020) | 2020年
关键词
Schizophrenia; resting-state fMRI; dynamic functional network connectivity; machine learning; feature learning; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Schizophrenia (SZ) is a severe neuropsychiatric disorder with a hallmark of functional dysconnectivity between numerous brain regions. With an implicit assumption of stationary brain interactions during the scanning period, most of the resting-state functional magnetic resonance imaging (fMRI) studies are conducted on static functional network connectivity (sFNC). Dynamic functional network connectivity (dFNC) that explores temporal patterns of functional connectivity (FC) might provide additional information to its static counterpart. In this work, we first estimate latent features (called connectivity states) by applying k-means clustering on dFNC. Next, using the estimated latent features, we trained and tested a classifier, which can differentiate SZ from healthy control (HC) subjects with 71% accuracy. Using a feature selection method embedded in the classifier, we have highlighted the role of transition probabilities between states as potential biomarkers and identified the role of lightly modularized transient connectivity state in pulling healthy subjects out of both highly modularized and very disconnected states. This will offer some new understandings about the way the healthy brain shifts between the most and the least connected states of whole brain connectivity.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 50 条
  • [1] Aberrant Functional Network Connectivity Transition Probability in Major Depressive Disorder
    Zendehrouh, Elaheh
    Sendi, Mohammad. S. E.
    Sui, Jing
    Fu, Zening
    Zhi, Dongmei
    Lv, Luxian
    Ma, Xiaohong
    Ke, Qing
    Li, Xianbin
    Wang, Chuanyue
    Abbott, Christopher. C.
    Turner, Jessica A.
    Miller, Robyn. L.
    Calhoun, Vince D.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1493 - 1496
  • [2] Aberrant Dynamic Functional Connectivity of Default Mode Network in Schizophrenia and Links to Symptom Severity
    Sendi, Mohammad S. E.
    Zendehrouh, Elaheh
    Ellis, Charles A.
    Liang, Zhijia
    Fu, Zening
    Mathalon, Daniel H.
    Ford, Judith M.
    Preda, Adrian
    van Erp, Theo G. M.
    Miller, Robyn L.
    Pearlson, Godfrey D.
    Turner, Jessica A.
    Calhoun, Vince D.
    FRONTIERS IN NEURAL CIRCUITS, 2021, 15
  • [3] Aberrant structural and functional connectivity in the salience network and central executive network circuit in schizophrenia
    Chen, Quan
    Chen, Xingui
    He, Xiaoxuan
    Wang, Lu
    Wang, Kai
    Qiu, Bensheng
    NEUROSCIENCE LETTERS, 2016, 627 : 178 - 184
  • [4] Effect of tDCS on Aberrant Functional Network Connectivity in Refractory Hallucinatory Schizophrenia: A Pilot Study
    Yoon, Youngwoo Bryan
    Kim, Minah
    Lee, Junhee
    Cho, Kang Ik K.
    Kwak, Seoyeon
    Lee, Tae Young
    Kwon, Jun Soo
    PSYCHIATRY INVESTIGATION, 2019, 16 (03) : 244 - 248
  • [5] Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia
    Alves, Caroline L.
    Toutain, Thaise G. L. de O.
    Porto, Joel Augusto Moura
    Aguiar, Patricia Maria de Carvalho
    de Sena, Eduardo Ponde
    Rodrigues, Francisco A.
    Pineda, Aruane M.
    Thielemann, Christiane
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (05)
  • [6] Classification of schizophrenia spectrum disorder using machine learning and functional connectivity: reconsidering the clinical application
    Chao Li
    Ji Chen
    Mengshi Dong
    Hao Yan
    Feng Chen
    Ning Mao
    Shuai Wang
    Xiaozhu Liu
    Yanqing Tang
    Fei Wang
    Jie Qin
    BMC Psychiatry, 25 (1)
  • [7] Graph neural network and machine learning analysis of functional neuroimaging for understanding schizophrenia
    Gayathri Sunil
    Smruthi Gowtham
    Anurita Bose
    Samhitha Harish
    Gowri Srinivasa
    BMC Neuroscience, 25
  • [8] Graph neural network and machine learning analysis of functional neuroimaging for understanding schizophrenia
    Sunil, Gayathri
    Gowtham, Smruthi
    Bose, Anurita
    Harish, Samhitha
    Srinivasa, Gowri
    BMC NEUROSCIENCE, 2024, 25 (01)
  • [9] Aberrant patterns of local and long-range functional connectivity densities in schizophrenia
    Liu, Chuanxin
    Zhang, Wei
    Chen, Guangdong
    Tian, Hongjun
    Li, Jie
    Qu, Hongru
    Cheng, Langlang
    Zhu, Jingjing
    Zhuo, Chuanjun
    ONCOTARGET, 2017, 8 (29) : 48196 - 48203
  • [10] Resting-state Functional Connectivity and Deception: Exploring Individualized Deceptive Propensity by Machine Learning
    Tang, Honghong
    Lu, Xiaping
    Cui, Zaixu
    Feng, Chunliang
    Lin, Qixiang
    Cui, Xuegang
    Su, Song
    Liu, Chao
    NEUROSCIENCE, 2018, 395 : 101 - 112