Dendritic Spine Remodeling After Spinal Cord Injury Alters Neuronal Signal Processing

被引:46
作者
Tan, Andrew M.
Choi, Jin-Sung
Waxman, Stephen G.
Hains, Bryan C.
机构
[1] Vet Affairs Connecticut Healthcare Syst, Rehabil Res Ctr, West Haven, CT USA
[2] Yale Univ, Sch Med, Dept Neurol, New Haven, CT 06510 USA
[3] Yale Univ, Sch Med, Ctr Neurosci & Regenerat Res, New Haven, CT USA
关键词
LONG-TERM POTENTIATION; SODIUM-CHANNEL NA(V)1.3; CHRONIC CENTRAL PAIN; DORSAL-HORN; GABAERGIC INHIBITION; SYNAPTIC PLASTICITY; PYRAMIDAL NEURONS; CONTUSION INJURY; NERVE INJURY; NEUROPATHIC PAIN;
D O I
10.1152/jn.00095.2009
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Tan AM, Choi J-S, Waxman SG, Hains BC. Dendritic spine remodeling after spinal cord injury alters neuronal signal processing. J Neurophysiol 102: 2396-2409, 2009. First published August 19, 2009; doi:10.1152/jn.00095.2009. Central sensitization, a prolonged hyperexcitability of dorsal horn nociceptive neurons, is a major contributor to abnormal pain processing after spinal cord injury (SCI). Dendritic spines are micron-sized dendrite protrusions that can regulate the efficacy of synaptic transmission. Here we used a computational approach to study whether changes in dendritic spine shape, density, and distribution can individually, or in combination, adversely modify the input-output function of a postsynaptic neuron to create a hyperexcitable neuronal state. The results demonstrate that a conversion from thin-shaped to more mature, mushroom-shaped spine structures results in enhanced synaptic transmission and fidelity, improved frequency-following ability, and reduced inhibitory gating effectiveness. Increasing the density and redistributing spines toward the soma results in a greater probability of action potential activation. Our results demonstrate that changes in dendritic spine morphology, documented in previous studies on spinal cord injury, contribute to the generation of pain following SCI.
引用
收藏
页码:2396 / 2409
页数:14
相关论文
共 79 条
[1]  
Agrawal SK, 1997, J NEUROSCI, V17, P1055
[2]   Dendritic spines linearize the summation of excitatory potentials [J].
Araya, Roberto ;
Eisenthal, Kenneth B. ;
Yuste, Rafael .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (49) :18799-18804
[3]   Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn [J].
Baba, H ;
Ji, RR ;
Kohno, T ;
Moore, KA ;
Ataka, T ;
Wakai, A ;
Okamoto, M ;
Woolf, CJ .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2003, 24 (03) :818-830
[4]   Spine motility: Phenomenology, mechanisms, and function [J].
Bonhoeffer, T ;
Yuste, R .
NEURON, 2002, 35 (06) :1019-1027
[5]   Do thin spines learn to be mushroom spines that remember? [J].
Bourne, Jennifer ;
Harris, Kristen M. .
CURRENT OPINION IN NEUROBIOLOGY, 2007, 17 (03) :381-386
[6]  
CALABRESE B, 2006, AM J PHYSIOL, V21, P38
[7]   Spine architecture and synaptic plasticity [J].
Carlisle, HJ ;
Kennedy, MB .
TRENDS IN NEUROSCIENCES, 2005, 28 (04) :182-187
[8]   Changes in synaptic morphology accompany actin signaling during LTP [J].
Chen, Lulu Y. ;
Rex, Christopher S. ;
Casale, Malcolm S. ;
Gall, Christine M. ;
Lynch, Gary .
JOURNAL OF NEUROSCIENCE, 2007, 27 (20) :5363-5372
[9]  
Chetkovich DM, 2002, J NEUROSCI, V22, P5791
[10]   Dendritic spine density and LTP induction in cultured hippocampal slices [J].
Collin, C ;
Miyaguchi, K ;
Segal, M .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 77 (03) :1614-1623