Essential bases and toric degenerations arising from birational sequences

被引:27
作者
Fang, Xiu [1 ]
Fourier, Ghislain [2 ]
Littelmann, Peter [1 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
[2] Leibniz Univ Hannover, Inst Algebra Zahlentheorie & Diskrete Mathemat, Hannover, Germany
关键词
Birational sequences; Flag varieties; Spherical varieties; String polytopes; Toric degenerations; NEWTON-OKOUNKOV BODIES; CANONICAL BASES; PBW FILTRATION; CRYSTAL BASES; VARIETIES; MODULES; A(N);
D O I
10.1016/j.aim.2017.03.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new approach to construct T-equivariant flat toric degenerations of flag varieties and spherical varieties, combining ideas coming from the theory of Newton Okounkov bodies with ideas originally stemming from PBW-filtrations. For each pair (S,>) consisting of a birational sequence and a monomial order, we attach to the affine variety G//U a monoid Gamma = Gamma(S, >). As a side effect we get a vector space basis is B-Gamma of C[G//U], the elements being indexed by Gamma. The basis B-Gamma has multiplicative properties very similar to those of the dual canonical basis. This makes it possible to transfer the methods of Alexeev and Brion [1] to this more general setting, once one knows that the monoid Gamma is finitely generated and saturated. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:107 / 149
页数:43
相关论文
共 34 条
[1]   Toric degenerations of spherical varieties [J].
Alexeev V. ;
Brion M. .
Selecta Mathematica, 2005, 10 (4) :453-478
[2]   Okounkov bodies and toric degenerations [J].
Anderson, Dave .
MATHEMATISCHE ANNALEN, 2013, 356 (03) :1183-1202
[3]  
[Anonymous], 1972, IZV AKAD NAUK SSSR M
[4]  
Backhaus T., 2017, GLASG MATH IN PRESS
[5]  
Backhaus T., ARXIV150406522
[6]  
Backhaus T, 2015, J LIE THEORY, V25, P815
[7]   Tensor product multiplicities, canonical bases and totally positive varieties [J].
Berenstein, A ;
Zelevinsky, A .
INVENTIONES MATHEMATICAE, 2001, 143 (01) :77-128
[8]  
Caldero Cal] P., 2003, REPRESENT THEORY, V7, P164
[9]   Toric degenerations of Schubert varieties [J].
Caldero, P .
TRANSFORMATION GROUPS, 2002, 7 (01) :51-60
[10]  
Cox D., 2011, Toric Varieties. Graduate Studies in Mathematics