flame structure;
mass spectrometry;
ionization;
synchrotron radiation;
isomers;
D O I:
10.1007/s10573-006-0100-0
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Molecular-beam mass spectrometry (MBMS) has proven to be a powerful tool for the general analysis of flame structure, providing concentrations of radical and stable species for low-pressure flat flames since the work of Homann and Wagner in the 1960's. In this paper, we will describe complementary measurements using electron-impact ionization with a high-mass-resolution quadrupole mass spectrometer and vacuum-ultraviolet photoionization in a time-of-flight mass spectrometer. Isomers are resolved that have not been separately detectable before in MBMS studies of flames, including C3H2, C3H4, C4H3, C4H4, C4H5, C6H6, and C2H4O. The qualitative and quantitative results of MBMS have led to advances in modeling and applying flame chemistry.