Reducibility of Quantum Representations of Mapping Class Groups

被引:6
作者
Andersen, Jorgen Ellegaard [1 ]
Fjelstad, Jens [2 ]
机构
[1] Univ Aarhus, Ctr Quantum Geometry Moduli Spaces, DK-8000 Aarhus, Denmark
[2] Karlstad Univ, Dept Phys, S-65188 Karlstad, Sweden
基金
新加坡国家研究基金会;
关键词
topological quantum field theory; mapping class group; quantum representation; CONFORMAL FIELD-THEORY; INVARIANT PARTITION-FUNCTIONS; MODULAR INVARIANTS; TFT CONSTRUCTION; GEOMETRIC-QUANTIZATION; KAUFFMAN BRACKET; ALPHA-INDUCTION; SIMPLE CURRENTS; CLASSIFICATION; CATEGORIES;
D O I
10.1007/s11005-009-0367-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we provide a general condition for the reducibility of the Reshetikhin-Turaev quantum representations of the mapping class groups. Namely, for any modular tensor category with a special symmetric Frobenius algebra with a non-trivial genus one partition function, we prove that the quantum representations of all the mapping class groups built from the modular tensor category are reducible. In particular, for SU(N) we get reducibility for certain levels and ranks. For the quantum SU(2) Reshetikhin-Turaev theory we construct a decomposition for all even levels. We conjecture this decomposition is a complete decomposition into irreducible representations for high enough levels.
引用
收藏
页码:215 / 239
页数:25
相关论文
共 41 条
[1]   Involutions on moduli spaces and refinements of the Verlinde formula [J].
Andersen, JE ;
Masbaum, G .
MATHEMATISCHE ANNALEN, 1999, 314 (02) :291-326
[2]  
ANDERSEN JE, 1984, ARXIVMATHQA07062184
[3]  
ANDERSEN JE, 2010, MANY FACETS IN PRESS
[4]   Asymptotic faithfulness of the quantum SU(n) representations of the mapping class groups [J].
Andersen, Jorgen Ellegaard .
ANNALS OF MATHEMATICS, 2006, 163 (01) :347-368
[5]  
ATIYAH M, 1989, PUBL MATH-PARIS, V68, P175, DOI DOI 10.1007/BF02698547
[6]  
AXELROD S, 1991, J DIFFER GEOM, V33, P787
[7]  
Bakalov B., 2001, U LECT SERIES, V21
[8]   The kernel of the modular representation and the Galois action in RCFT [J].
Bantay, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (03) :423-438
[9]   3-MANIFOLD INVARIANTS DERIVED FROM THE KAUFFMAN BRACKET [J].
BLANCHET, C ;
HABEGGER, N ;
MASBAUM, G ;
VOGEL, P .
TOPOLOGY, 1992, 31 (04) :685-699
[10]   A spin decomposition of the Verlinde formulas for type A modular categories [J].
Blanchet, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (01) :1-28