Generalized Kadomtsev-Petviashvili equation with an infinite-dimensional symmetry algebra

被引:53
作者
Güngör, F [1 ]
Winternitz, P
机构
[1] Istanbul Tech Univ, Dept Math, Fac Sci & Letters, TR-80626 Istanbul, Turkey
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/S0022-247X(02)00445-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized Kadomtsev-Petviashvili equation, describing water waves in oceans of varying depth, density and vorticity is discussed. A priori, it involves 9 arbitrary functions of one, or two variables. The conditions are determined under which the equation allows an infinite-dimensional symmetry algebra. This algebra can involve up to three arbitrary functions of time. It depends on precisely three such functions if and only if it is completely integrable. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:314 / 328
页数:15
相关论文
共 26 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
LETTERE AL NUOVO CIMENTO, 1978, 23 (09) :333-338
[3]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[4]  
[Anonymous], CRM SER MATH PHYS
[5]  
CALOGERO F, 1982, SPECTRAL TRANSFORM S, V1
[6]   ON THE INFINITE-DIMENSIONAL SYMMETRY GROUP OF THE DAVEY-STEWARTSON EQUATIONS [J].
CHAMPAGNE, B ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (01) :1-8
[7]   THE COMPUTER CALCULATION OF LIE POINT SYMMETRIES OF LARGE SYSTEMS OF DIFFERENTIAL-EQUATIONS [J].
CHAMPAGNE, B ;
HEREMAN, W ;
WINTERNITZ, P .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 66 (2-3) :319-340
[8]   PAINLEVE ANALYSIS AND THE COMPLETE-INTEGRABILITY OF A GENERALIZED VARIABLE-COEFFICIENT KADOMTSEV-PETVIASHVILI EQUATION [J].
CLARKSON, PA .
IMA JOURNAL OF APPLIED MATHEMATICS, 1990, 44 (01) :27-53
[9]  
DAVID D, 1989, STUD APPL MATH, V80, P1
[10]   BACKLUND-TRANSFORMATIONS AND THE INFINITE-DIMENSIONAL SYMMETRY GROUP OF THE KADOMTSEV-PETVIASHVILI EQUATION [J].
DAVID, D ;
LEVI, D ;
WINTERNITZ, P .
PHYSICS LETTERS A, 1986, 118 (08) :390-394