Driver profiling - Data-based identification of driver behavior dimensions and affecting driver characteristics for multi-agent traffic simulation

被引:23
|
作者
Witt, Manuela [1 ]
Kompass, Klaus [1 ]
Wang, Lei [1 ]
Kates, Ronald [2 ]
Mai, Marcus [3 ]
Prokop, Guenther [3 ]
机构
[1] BMW Grp, Dept Vehicle Safety, Knorrstr 147, D-80788 Munich, Germany
[2] REK Consulting, Munich, Germany
[3] Tech Univ Dresden, Chair Automobile Engn, Dresden, Germany
关键词
Driver behavior; Multi-agent traffic simulation; Prospective impact assessment; Cognitive driver behavior modeling; Driver characteristics; Driver personality; Automated driving; SENSATION SEEKING; DRIVING ANGER; ACCIDENT RISK; SELF-REPORTS; PERSONALITY; PERCEPTION; AGE; RELIABILITY; PERFORMANCE; PREDICTORS;
D O I
10.1016/j.trf.2019.05.007
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
This paper focusses on the role of driver individuality in the field of cognitive driver behavior modeling for the prospective safety impact assessment of advanced driver assistance systems (ADAS) and automated driving functions. Virtual traffic simulation requires valid models for the environment, the vehicle and the driver. Especially modeling human driver behavior is a major challenge, which in recent years has already led to the development of various driver models for the purpose of virtual simulation. Modeling human behavior in traffic with a precise representation of human cognition, capability and individuality, are crucial demands, which require thorough investigation and understanding of the human driver. Current driver behavior models often leave aside the aspect of driver individuality and lack the consideration of differences in driving behavior between different drivers. To take into account all the aspects from complex human cognitive processes to individual differences in action implementation, the Stochastic Cognitive Model (SCM) was developed. The SCM is based on five subcomponents: gaze control, information acquisition, mental model, action manager and situation manager (=decision making process) and action implementation. The aim of the present study is to provide a basis for establishing a solid logic for the integration of driver individuality into the current structure of the SCM by creating a new submodule that takes into account several behavior affecting driver characteristics. This subcomponent controls the stochastic variance in several driver behavior parameters, such as velocity or comfort longitudinal acceleration. In a representative driving simulator study with 43 participants, driver behavior on the highway was investigated and thoroughly analyzed. Information about several relevant driver characteristics and personality traits of the participants was collected and a logical hierarchical model was set up to cluster several dependent and independent variables into four layers: independent manifest driver variables, such as age or gender (Level 1), latent driver personality factors, such as thrill seeking or anxiety (Level 2), driver behavior dimensions, such as dynamics and law conformity (Level 3), and various dependent driver behavior parameters, such as velocity, acceleration or speed limit violation (Level 4). Multiple linear regression analyses were run to find the individual driver characteristics and personality traits, by which most of the stochastic variance in the measured driver behavior parameters can be explained. Subsequently, a principal component analysis (PCA) was run to test, if the previously clustered driver behavior parameters were loading on the presumed behavioral dimensions on the third level of the model to identify significant components of driver behavior, such as dynamics or law conformity. Results of the present study show significant correlations between driver characteristics and driver behavior parameters. According to the results of the PCA, variability in driver behavior can be explained to a great extent by three largely independent components: (1) Speed and cruise control, (2) Dynamics and (3) Driver performance. With the consideration of driver individuality in driver behavior models for the agent-based traffic simulation, validity of the results from prospective safety impact assessment analyses of automated driving functions can be enhanced. Beyond that, the findings of the current study can be used as a solid basis for the development of adaptive functions in the field of vehicle automation, considering the different driving skills and preferences of drivers with different individual profiles. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 50 条
  • [41] Time-dependent effect of advanced driver assistance systems on driver behavior based on connected vehicle data
    Chen, Yuzhi
    Xie, Yuanchang
    Wang, Chen
    Yang, Liguo
    Zheng, Nan
    Wu, Lan
    ANALYTIC METHODS IN ACCIDENT RESEARCH, 2025, 45
  • [42] Crash Data-Based Investigation into How Injury Severity Is Affected by Driver Errors
    Shaon, Mohammad Razaur Rahman
    Qin, Xiao
    TRANSPORTATION RESEARCH RECORD, 2020, 2674 (05) : 452 - 464
  • [43] Proposal for Identification Scheme of Driver and Impostor based on Acceleration Data
    Mori, Yuki
    Ono, Ryota
    Mitani, Takuya
    Naito, Katsuhiro
    Yamazato, Takaya
    2019 8TH IEEE INTERNATIONAL CONFERENCE ON CONNECTED VEHICLES AND EXPO (IIEEE CCVE), 2019,
  • [44] Driving Simulator Data Based Driver Behavior Ethogram Establishment
    Mao, Yan
    Zhang, Weihan
    Wang, Meng
    Guo, Da
    2019 1ST INTERNATIONAL CONFERENCE ON INDUSTRIAL ARTIFICIAL INTELLIGENCE (IAI 2019), 2019,
  • [45] Modeling and Recognizing Driver Behavior Based on Driving Data: A Survey
    Wang, Wenshuo
    Xi, Junqiang
    Chen, Huiyan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [46] Neural Network Based Algorithms for Traffic Lights Identification in Multi-Camera Driver Assistance Systems
    N. S. Guzhva
    R. N. Sadekov
    Gyroscopy and Navigation, 2024, 15 (3) : 244 - 255
  • [47] Multi-agent Based Simulation of Traffic in Vietnam
    The Duy Bui
    Duc Hai Ngo
    Cong Tran
    PRINCIPLES AND PRACTICE OF MULTI-AGENT SYSTEMS, 2012, 7057 : 636 - 648
  • [48] Analysis of Traffic Signs Information Volume Affecting Driver's Visual Characteristics and Driving Safety
    Han, Lei
    Du, Zhigang
    Wang, Shoushuo
    Chen, Ying
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (16)
  • [49] Critical safety management driver identification based upon temporal variation characteristics of driving behavior
    Zhang, Ruici
    Wen, Xiang
    Cao, Huanqiang
    Cui, Pengfei
    Chai, Hua
    Hu, Runbo
    Yu, Rongjie
    ACCIDENT ANALYSIS AND PREVENTION, 2023, 193
  • [50] Editing Driver Character: Socially-Controllable Behavior Generation for Interactive Traffic Simulation
    Chang, Wei-Jer
    Tang, Chen
    Li, Chenran
    Hu, Yeping
    Tomizuka, Masayoshi
    Zhan, Wei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (09) : 5432 - 5439